Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes

Abstract

A Streptomyces pristinaespiralis strain, which produces a streptogramin antibiotic pristinamycin II (PII) as a mixture of two biologically active molecules PIIB and PIIA, was genetically engineered to produce exclusively PllA. The snaA,B genes, which encode a PIIA synthase that performs oxidation of the precursor (PIIB) to the final product (PIIA), were integrated in the chromosome of S. pristinaespiralis using an integrative derivative of the pSAM2 genetic element from Streptomyces ambofaciens. Integration was due to site-specific recombination at the attB site of S. pristinaespiralis, and no homologous recombination at the snaA,B locus was observed. The attB site of S. pristinaespiralis was sequenced and found to overlap the 3′ end of a pro-tRNA gene. The integrants were stable in industrial conditions of pristinamycin production and showed no decrease in Pll biosynthesis. Western blot analysis showed a constant production of the PIIA synthase in the overall fermentation process due to expression of the cloned snaA,B genes from the constitutive ermE* promoter. This allows the complete conversion of the PIIB form into PIIA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Preud'homme, J., Belloc, A., Charpentié, Y., and Tarridec, P. 1965. Un antibiotlque formé de deux groupes de composants à synergie d'action : la prlstinamycine. C. R. Acad. Sol. 260: 1309–1312.

    CAS  Google Scholar 

  2. Preud'homme, J., Tarridec, P., and Belloc, A. 1968. Pristinamycine : isolement, caractérlsatlon et identification des constituents. Bull. Soc. Chim. 2: 585–591.

    CAS  Google Scholar 

  3. Vazquez, D. 1975. The streptogramin family of antibiotics. Antibiotics 3: 521–534.

    CAS  Google Scholar 

  4. Cocito, C.G. 1979. Antibiotics of the virginiamycln family, inhibitors which contain synergistic components. Microbiol. Rev. 43: 145–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cocito, C. and Chinali, G. 1985. Molecular mechanism of action of virginlamycin-like antibiotics (synerglmyclns) on protein synthesis in bacterial cell-free systems. J. Antimicrob. Chemother. 16 (suppl.A): 35–52.

    Article  CAS  Google Scholar 

  6. Aumercier, M., Bouhallab, S., Capmau, M.-L., and Le Goffic, F. 1992. RP59500: a proposed mechanism for its bactericidal activity. J. Antimicrob. Chemother. 30 (suppl.A): 9–14.

    Article  CAS  Google Scholar 

  7. Blanc, V., Lagneaux, D., Didler, P., Gil, P., Lacroix, P., and Crouzet, J. 1995. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycln IIB to pristi-namycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5′-phosphate oxidoreductase. J. Bacteriol. 177: 5206–5214.

    Article  CAS  Google Scholar 

  8. Thibaut, D., Ratet, N., Bisch, D., Faucher, D., Debussche, L., and Blanche, F. 1995. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristlnamycin IIA, biosynthesis. J. Bacteriol. 177: 5199–5205.

    Article  CAS  Google Scholar 

  9. Blanc, V., Salah-Bey, K., Folcher, M., and Thompson, C.J. 1995. Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis . Mol. Microbiol. 17: 989–999.

    Article  CAS  Google Scholar 

  10. Salah-Bey, K., Blanc, V., and Thompson, C.J. 1995. Stress-activated expression of a Streptomyces pristinaespiralis multidrug resistance gene (ptr) in various Streptomyces spp. and Escnerichia coli. Mol. Microbiol. 17: 1001–1012.

    CAS  Google Scholar 

  11. Takano, E., Gramajo, H.C., Strauch, E., Andres, N., White, J., and Bibb, M.J. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodiglosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797–2804.

    Article  CAS  Google Scholar 

  12. Gramajo, H.C., Takano, E., and Bibb, M.J. 1993. Stationary phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol. Microbiol. 7: 837–845.

    Article  CAS  Google Scholar 

  13. Hopwood, D., Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fuji, I. et. al. 1985. Production of “hybrid” antibiotics by genetic engineering. Nature 314: 642–644.

    Article  CAS  Google Scholar 

  14. Katz, L. and Donadio, S. 1993. Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47: 875–912.

    Article  CAS  Google Scholar 

  15. McDaniel, R., Khosla, E., Hopwood, D.A., and Khosla, C. 1995. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375: 549–554.

    Article  CAS  Google Scholar 

  16. Alvarez, M.A., Fu, H., Khosla, C., Hopwood, D.A., and Bailey, J.E. 1996. Engineered biosynthesis of novel polyketides: properties of the whiE aromatase/cyclase. Nature Biotechnology 14: 335–338.

    Article  CAS  Google Scholar 

  17. Thomas, D.I., Cove, J.H., Baumberg, S., Jones, C.A., and Rudd, B.A.M. 1991. Plasmid effects on secondary metabolite production by a streptomycete synthesizing an anthelmintic macrollde. J. Gen. Microbiol. 137: 2331–2337.

    Article  CAS  Google Scholar 

  18. Pernodet, J.-L., Simonet, J.-M., and Guérineau, M. 1984. Plasmids in different strains of Streptomyces ambofaciens: free and Integrated form of plasmid pSAM2. Mol. Gen. Genet. 198: 35–41.

    Article  CAS  Google Scholar 

  19. Boccard, F., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1988. Site-specific integration of plasmid pSAM2 in Streptomyces lividans and Streptomyces ambofaciens . Mol. Gen. Genet. 212: 432–439.

    Article  CAS  Google Scholar 

  20. Boccard, F., Smokvina, T., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1989. The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophage. EMBO J. 8: 973–980.

    Article  CAS  Google Scholar 

  21. Boccard, F., Smokvina, T., Pernodet, J.-L., Friedmann, A., and Guéineau, M. 1989. Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid 21: 59–70.

    Article  CAS  Google Scholar 

  22. Smokvina, T., Boccard, F., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1991. Functional analysis of the Streptomyces ambofaciens element pSAM2. Plasmid 25: 40–52.

    Article  CAS  Google Scholar 

  23. Hagège, J., Boccard, F., Smokvina, T., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1994. Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid 31: 166–183.

    Article  Google Scholar 

  24. Hagège, J., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1993. Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens . Mol. Microbiol. 10: 799–812.

    Article  Google Scholar 

  25. Hagège, J., Pernodet, J.-L., Sezonov, G., Gerbaud, C., Friedmann, A., and Guérineau, M. 1993. Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J. Bacteriol. 175: 5529–5538.

    Article  Google Scholar 

  26. Sezonov, G., Hagége, J., Pernodet, J.-L., Friedmann, A., and Guérineau, M. 1995. Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens . Mol. Microbiol. 17: 533–544.

    Article  CAS  Google Scholar 

  27. Smokvina, T., Mazodier, P., Boccard, F., Thompson, C.J., and Guérineau, M. 1990. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94: 53–59.

    Article  CAS  Google Scholar 

  28. Soussy, C.J., Acar, J.F., Cluzel, R., Courvalln, P., Duval, J., Fleurette, J. et al. 1992.A collaborative study of the in-vitro sensitivity to RP 59500 of bacteria Isolated in seven hospitals in France. J. Antimicrob. Chemother. 30 (suppl.A): 53–58.

    Article  Google Scholar 

  29. Barrière, J.C., Bouanchaud, D.H., Paris, J.M., Rolin, O., Harris, N.V., and Smith, C. 1992. Antimicrobial activity against Staphylococcus aureus of semlsynthetic injectable streptogramins: RP 59500 and related compounds. J. Antimicrob. Chemother. 30 (suppl.A): 1–8.

    Article  Google Scholar 

  30. Smokvina, T. 1990. Contribution à la caractérisatlon de pSAM2, un élément génétlque mobile de Streptomyces . Ph.D. thesis. Université de Paris-Sud, Orsay.

  31. Bibb, M.J., Janssen, G.R., and Ward, J.M. 1986. Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of Streptomyces erythraeus . Gene 41:E357E368.

    Article  CAS  Google Scholar 

  32. Bibb, M.J., White, J., Ward, J.M., and Janssen, G.R. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-blnding site. Mol. Microbiol. 14: 533–545.

    Article  CAS  Google Scholar 

  33. Mazodier, P., Thompson, C., and Boccard, F. 1990. The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes. Mol. Gen. Genet. 222: 431–434.

    Article  CAS  Google Scholar 

  34. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M. et. al. 1985. Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich, England.

    Google Scholar 

  35. Vallins, W.J.S., and Baumberg, S. 1985. Cloning of a DNA fragment from Streptomyces griseus which directs streptomycin phosphotransferase activity. J. Gen. Microbiol. 131: 1657–1669.

    CAS  PubMed  Google Scholar 

  36. Cox, K.L., and Seno, E.T. 1990. Maintenance of cloned biosynthetic genes in Streptomyces fradiae on freely-replicating and integrative plasmid vectors. Abstracts of the 14th UCLA Symposia, in J. Cell. Blochem. (suppl. 14A): Abstract CC016.

    Google Scholar 

  37. Sezonov, G., Hagège, J., Pernodet, J.-L., and Guérineau, M. 1995. Biology of a Streptomyces integrating element, pSAM2. In: Proceeding of the Ninth International Symposium on the Biology of the Actinomycetes. Biotechnologia (Russia) 7-8: 80–84.

    Google Scholar 

  38. Kuhstoss, S., Richardson, M.A., and Rao, R.N. 1989. Site-specific integration in Streptomyces ambofaciens: localization of integration functions In S. ambofaciens plasmid pSAM2. J. Bacteriol. 171: 16–23.

    Article  CAS  Google Scholar 

  39. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.

    Google Scholar 

  40. Thompson, C.J., Ward, J.M., and Hopwood, D.A. 1980. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature 286: 525–527.

    Article  CAS  Google Scholar 

  41. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  42. Alegre, M.-T., Cournoyer, B., Mesas, J.-M., Guérineau, M., Normand, P., and Pernodet, J.-L. 1994. Cloning of Frankia species putative tRNAPro genes and their efficacy for pSAM2 site-specific integration in Streptomyces lividans . Appl. Environ. Microbiol. 60: 4279–4283.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kay, R., and McPherson, J. 1987. Hybrid pUC vectors for addition of new restriction enzyme sites to the ends of DNA fragments. Nucleic Acids Res. 15: 2778.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sezonov, G., Blanc, V., Bamas-Jacques, N. et al. Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol 15, 349–353 (1997). https://doi.org/10.1038/nbt0497-349

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing