Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Cysteine to Serine Substitutions in Basic Fibroblast Growth Factor: Effect on Inclusion Body Formation and Proteolytic Susceptibility During in Vitro Refolding

Abstract

We have investigated the effect of cysteine to serine substitutions in human basic fibroblast growth factor (bFGF) on the formation of inclusion bodies in Escherichia coli. Using a temperature–sensitive expression system, about 30% of human bFGF, which contains four cysteines at positions 26, 70, 88, and 93, is deposited into inclusion bodies. A single mutation at position 88 and a double mutation at positions 70 and 88 do not greatly alter the partition of bFGF into soluble and insoluble cell fractions. However, a single substitution of cysteine 70 by serine decreases the fraction of soluble bFGF significantly. When cysteines 26 and 93 (conserved among related growth factors) are replaced by serines, no soluble bFGF is formed in E. coli. Cysteine to serine substitutions also affect proteolytic susceptibility of bFGF during in vitro refolding from crude inclusion bodies. About 60% of human bFGF is lost to proteolytic degradation during in vitro refolding. Replacement of cysteines by serines increases the total recovery of bFGF, although more aggregates are formed during refolding. Ser–88–bFGF was expressed at the highest level, gave the highest soluble fraction in vivo, and exhibited the greatest fractional recovery and was recovered with the largest insoluble fraction after in vitro refolding. Thermal stability experiments at 42°C and 70°C revealed that cysteine to serine substitutions did not cause aggregation of the folded protein in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, D.C., Van Frank, R.M., Muth, W.L. and Burnett, J.P. 1982. Cytoplasmic inclusion bodies in Escherichia coli producing bio synthetic chuman insulin proteins. Science 215: 687–689.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, Y.-S.E. 1983. Increased cell buoyant densities of protein overproducing Escherichia coli cells. Biochem. Biophys. Res. Commun. 111: 104–111.

    Article  CAS  PubMed  Google Scholar 

  3. Georgiou, G., Telford, J.N., Shuler, M.L. and Wilson, D.B. 1986. Localization of inclusion bodies in Escherichia coli overproducing β-lactamase or alkaline phosphatase. Appl. Environ. Microbiol. 52: 1157–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hart, R.A., Rinas, U. and Bailey, J.E. 1990. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J. Biol .Chem. 265: 12728–12733.

    CAS  PubMed  Google Scholar 

  5. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  6. Mitraki, A. and King, J. 1989. Protein folding intermediates and inclusion body formation. Bio/Technology 7: 690–697.

    CAS  Google Scholar 

  7. Kiefhaber, T., Rudolph, R., Kohler, H.H. and Buchner, J. 1991. Protein aggregation in vivo and in vitro: A quantitative model of the kinetic competition between folding and aggregation. BiolTechnology 9: 825–829.

    CAS  Google Scholar 

  8. Kopetzki, E., Schumacher, G. and Buckel, P. 1989. Control of formation of active soluble or inactive insoluble baker's yeast α-glucosidase P1 in Escherichia coli by induction and growth conditions. Mol. Gen. Genet. 216: 149–155.

    Article  CAS  PubMed  Google Scholar 

  9. Chalmers, J.J., Kim, E., Telford, J.N., Wong, E.Y., Tacon, W.C., Shuler, M.L. and Wilson, D.B. 1990. Effects of temperature on Escherichia coli overproducing β-lactamase or human epidermal growth factor. Appl. Environ. Microbiol. 56: 104–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  11. Piatak, M., Lane, J.A., Laird, W., Bjorn, M.J., Wang, A. and Williams, M. 1988. Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J. Biol. Chem. 263: 4837–4843.

    CAS  PubMed  Google Scholar 

  12. Mizukami, T., Komatsu, Y., Hosoi, N., Itoh, S. and Oka, T. 1986. Production of active human interferon-β in E coli. I. Preferential production by lower culture temperature. Biotechnol. Lett. 8: 605–610.

    Article  CAS  Google Scholar 

  13. Gross, M., Sweet, R.W., Sathe, G., Yokoyama, S., Fasano, O., Goldfarb, M., Wigler, M. and Rosenberg, M. 1985. Purification and charaterization of human H-ras proteins expressed in Escherichia coli. Mol. Cell. Biol. 5: 1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldenberg, D.P., Smith, D.H. and King, J. 1983. Genetic analysis of the folding pathway for the tailspike protein of phage P22. Proc. Natl. Acad. Sci. USA 80: 7060–7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haase-Pettingell, C.A. and King, J. 1988. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J. Biol. Chem. 263: 4977–4983

    CAS  PubMed  Google Scholar 

  16. King, J., Fane, B., Haase-Pettingell, C., Mitraki, A., Villafane, R. and Yu, M.-H. 1990. Identification of amino acid sequences influencing intracellular folding pathways using temperature-sensitive folding mutations, In: .Protein Folding: Deciphering the Second Half of the Genetic Code. Gierasch, L. M. and King, J. (Eds.). American Association for the Advancement of Science, Washington, D.C. 225–240.

    Google Scholar 

  17. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. and King, J. 1991. Global suppression of protein folding defects and inclusion body formation. Science 253: 54–58.

    Article  CAS  PubMed  Google Scholar 

  18. Krueger, J.K., Stock, A.M., Schutt, C.E. and Stock, J.B. 1990. Inclusion bodies from proteins produced at high levels in Escherichia coli, p. 136–141. In: Protein Folding: Deciphering the Second Half of the Genetic Code. Gierasch, L. M. and King, J. Eds. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  19. Wetzel, R., Perry, L.J. and Veilleux, C. 1991. Mutations in human interferon gamma affecting inclusion body formation identified by a general immunochemical screen. Bio/Technology 9: 731–737.

    CAS  Google Scholar 

  20. Strandberg, L. and Enfors, S.-O. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669–1674.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwane, M., Kurokawa, T., Sasada, R., Seno, M., Nakagawa, S. and Igarashi, K. 1987. Expression of cDNA encoding human basic fibroblast growth factor in E. coli. Biochem. Biophys. Res. Commun. 146: 470–477.

    Article  CAS  PubMed  Google Scholar 

  22. Seno, M., Sasada, R., Iwane, M., Sudo, K., Kurokawa, T., Ito, K. and Igarashi, K. 1988. Stabilizing basic fibroblast growth factor using protein engineering. Biochem. Biophys. Res. Commun. 151: 701–708.

    Article  CAS  PubMed  Google Scholar 

  23. Squires, C.H., Childs, J., Eisenberg, S.P., Polverini, P.J. and Sommer, A. 1988. Production and characterization of human basic fibroblast growth factor from Escherichia coli. J. Biol. Chem. 263: 16297–16302.

    CAS  PubMed  Google Scholar 

  24. Fox, G.M., Schiffer, S.G., Rohde, M.F., Tsai, L.B., Banks, A.R. and Arakawa, T., 1988. Production, biological activity, and structure of recombinant basic fibroblast growth factor and an analog with cysteine replaced by serine. J. Biol. Chem. 263: 18452–18458.

    CAS  PubMed  Google Scholar 

  25. Abraham, J.A., Whang, J.L., Tumolo, A., Mergia, A., Friedman, J., Gospodarowicz, D. and Fiddes, J.C. 1986. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. EMBO J. 5: 2523–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurokawa, T., Sasada, R., Iwane, M. and Igarashi, K. 1987. Cloning and expression of cDNA encoding human basic fibroblast growth factor. FEBS Lett. 213: 189–194.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G.M., Arakawa, T., Hsu, B.T. and Rees, D.C. 1991. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251: 90–93.

    Article  CAS  PubMed  Google Scholar 

  28. Eriksson, A.E., Cousens, L.S., Weaver, L.H. and Matthews, B.W. 1991. Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88: 3441–3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J., Cousens, L.S., Barr, P.J. and Sprang, S.R. 1991. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1β. Proc. Natl. Acad. Sci. USA 88: 3446–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshida, T., Miyagawa, K., Odagiri, H., Sakamoto, H., Little, P.F.R., Terada, M. and Sugimura, T. 1987. Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc. Natl. Acad. Sci. USA 84: 7305–7309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arakawa, T., Hsu, Y.-R., Schiffer, S.G., Tsai, L.B., Curless, C. and Fox, G.M. 1989. Characterization of a cysteine-free analog of recombinant human basic fibroblast growth factor. Biochem. Biophys. Res. Commun. 161: 335–341.

    Article  CAS  PubMed  Google Scholar 

  32. Babbitt, P.C., West, B.L., Buechter, D.D., Kuntz, I.D. and Kenyon, G.L. 1990. Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase in Escherichia coli leads to improved recovery of active enzyme. Bio/Technology 8: 945–949.

    CAS  Google Scholar 

  33. Zettlmeissl, G., Rudolph, R. and Jaenicke, R. 1979. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18: 5567–5575.

    Article  CAS  PubMed  Google Scholar 

  34. Rothman, J.E. 1989. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601.

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli, U.K. 1989. Cleavage of structral proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  36. Hochstrasser, D.F., Harrington, M.G., Hochstrasser, A.-C., Miller, M.J. and Merril, C.R. 1988. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173: 424–435.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinas, U., Tsai, L., Lyons, D. et al. Cysteine to Serine Substitutions in Basic Fibroblast Growth Factor: Effect on Inclusion Body Formation and Proteolytic Susceptibility During in Vitro Refolding. Nat Biotechnol 10, 435–440 (1992). https://doi.org/10.1038/nbt0492-435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0492-435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing