Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Antigen Responsive Antibody–Receptor Kinase Chimera

Abstract

We have constructed chimeric receptors, combining murine IgM and the cytoplasmic portion of human epidermal growth factor receptor (EGFR), with the aim of developing a novel immunosensor with antigen–dependent phosphorylation activity. When intact IgM was used, the chimeric receptor showed both antigen binding and protein tyrosine kinase activity, but the kinase activity was constitutive and independent of antigen binding. However, with 1gM lacking the CH2 domain, the autophosphorylation activity increased with increasing concentrations of anti–IgM or hapten–BSA conjugate. Monovalent hapten could not induce phosphorylation but inhibited stimulation by hapten–conjugated BSA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neuberger, M.S., Williams, G.T. and Fox, R.O. 1984. Recombinant antibodies possessing novel effector functions. Nature 312: 604–608.

    Article  CAS  Google Scholar 

  2. Williams, G.T. and Neuberger, M.S. 1986. Production of antibody-tagged enzymes by myeloma cells: application to DNA polymerase I Klenow fragment. Gene 43: 319–324.

    Article  CAS  Google Scholar 

  3. Schnee, J.M., Runge, M.S., Matsueda, G.R., Hudson, N.W., Seidman, J.G., Haber, E. and Quertermous, T. 1987. Construction and expression of a recombinant antibody-targeted plasminogen activator. Proc. Natl. Acad. Sci. U.S.A. 84: 6904–6908.

    Article  CAS  Google Scholar 

  4. Flanagan, J.G. and Leder, P. 1988. Neu protooncogene fused to an immunoglobulin heavy chain gene requires immunoglobulin light chain for cell surface expression and oncogenic transformation. Proc. Natl. Acad. Sci. U.S.A. 85: 8057–8061.

    Article  CAS  Google Scholar 

  5. Shin, S.U. and Morrison, S.L. 1990. Expression and characterization of an antibody binding specificity joined to insulin-like growth factor 1: Potential applications for cellular targeting. Proc. Natl. Acad. Sci. USA. 87: 5322–5326.

    Article  CAS  Google Scholar 

  6. Ullrich, A., Coussens, L., Hayflick, J.S., Dull, T.J., Gray, A., Tam, A.W., Lee, J., Yarden, Y., Libermann, T.A., Schlessinger, J., Down-ward, J., Mayes, E.L.V., Whittle, N., Waterfield, M.D. and Seeburg, P.H. 1984. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418–425.

    Article  CAS  Google Scholar 

  7. Merlino, G.T., Ishii, S., Whang-Peng, J., Knutsen, T., Xu, Y., Clark, A.J.L., Stratton, R.H., Wilson, R.K., Ma, D.P., Roe, B.A., Hunts, J.H., Shimizu, N. and Pastan, I. 1985. Structure and localization of genes encoding aberrant and normal epidermal growth factor receptor RNAs from A431 human carcinoma cells. Mol. Cell. Biol. 5: 1722–1734.

    Article  CAS  Google Scholar 

  8. Oi, V.T., Morrison, S.L., Herzenberg, L.A. and Berg, P. 1983. Immunoglobulin gene expression in transformed lymphoid cells. Proc. Natl. Acad. Sci. U.S.A. 80: 825–829.

    Article  CAS  Google Scholar 

  9. Schlessinger, J. 1988. Signal transduction by allosteric receptor oligomerization. TIBS 13: 443–447.

    CAS  PubMed  Google Scholar 

  10. Ullrich, A. and Schlessinger, J. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212.

    Article  CAS  Google Scholar 

  11. Moe, G.R., Bollag, G.E. and Koshland, D.E., 1989. Transmembrane signaling by a chimera of the Escherichia coli aspartate receptor and the human insulin receptor. Proc. Natl Acad. Sci. USA. 86: 5683–5687.

    Article  CAS  Google Scholar 

  12. Riedel, H., Dull, T.J., Schlessinger, J. and Ullrich, A. 1986. A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324: 68–70.

    Article  CAS  Google Scholar 

  13. Riedel, H., Schlessinger, J. and Ullrich, A. 1987. A chimeric, ligand binding v-erbB/EGF receptor retains transforming potential. Science 236: 197–200.

    Article  CAS  Google Scholar 

  14. Utsumi, R., Brissette, R.E., Rampersaud, A., Forst, S.A., Oosawa, K. and Inouye, M. 1989. Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245: 1246–1249.

    Article  CAS  Google Scholar 

  15. Roussel, M.F., Transy, C., Kato, J., Reinherz, E.L. and Sherr, C.J. 1990. Antibody-induced mitogenicity mediated by a chimeric CD2-c-fms receptor. Mol. Cell. Biol. 10: 2407–2412.

    Article  CAS  Google Scholar 

  16. Lev, S., Yarden, Y. and Givol, D. 1990. Receptor functions and ligand-dependent transforming potential of a chimeric kit protooncogene. Mol. Cell. Biol. 10: 6064–6068.

    Article  CAS  Google Scholar 

  17. Yan, H., Schlessinger, J. and Chao, M.V. 1991. Chimeric NGF-EGF receptors define domains responsible for neuronal differentiation. Science 252: 561–563.

    Article  CAS  Google Scholar 

  18. Orlandi, R., Güssow, D.H., Jones, P.T. and Winter, G. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86: 3833–3837.

    Article  CAS  Google Scholar 

  19. Sastry, L., Alting-Mees, M., Huse, W.D., Short, J.M., Sorge, J.A., Hay, B.N., Janda, K.D., Benkovic, S.J. and Lerner, R.A. 1989. Cloning of immunological repertoire in Escherichia coli for generation of monoclonal catalytic antibodies: Construction of a heavy chain variable region-specific cDNA library. Proc. Natl. Acad. Sci. USA 86: 5728–5732.

    Article  CAS  Google Scholar 

  20. Davis, G.T., Bedzyk, W.D., Voss, E.W. and Jakobs, T.W. 1991. Single chain antibody SCA encoding genes: One step construction and expression in eukaryotic cells. Bio/Technology 9: 165–169.

    CAS  PubMed  Google Scholar 

  21. Hombach, J., Tsubata, T., Leclercq, L., Stappert, H. and Reth, M. 1990. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 343: 760–762.

    Article  CAS  Google Scholar 

  22. Campbell, K.S., Hager, E.J., Friedrich, R.J. and Cambier, J.C. 1991. IgM antigen receptor complex contains phosphoprotein products of B29 and mb-1 genes. Proc. Natl. Acad. Sci. USA. 88: 3982–3986.

    Article  CAS  Google Scholar 

  23. Venkitaraman, A.R., Williams, G.T., Dariavach, P. and Neuberger, M.S., 1991. The B-cell antigen receptor of the five immunoglobulin classes. Nature 352: 777–781.

    Article  CAS  Google Scholar 

  24. Yamanashi, Y., Kakiuchi, T., Mizuguchi, J., Yamamoto, T. and Toyoshima, K. 1991. Association of B cell antigen receptor with protein tyrosine kinase lyn. Science 251: 192–194.

    Article  CAS  Google Scholar 

  25. Dymecki, S.M., Niederhuber, J.E. and Desiderio, S.V. 1990. Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247: 332–336.

    Article  CAS  Google Scholar 

  26. Campbell, M.-A. and Sefton, B.M. 1990. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. EMBO J. 9: 2125–2131.

    Article  CAS  Google Scholar 

  27. Gold, M.R., Law, D.A. and DeFranco, A.L. 1990. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature 345: 810–813.

    Article  CAS  Google Scholar 

  28. Graziadei, L., Riabowol, K. and Bar-Sagi, D. 1991. Co-capping of ras proteins with surface immunoglobulins in B lymphocytes. Nature 347: 396–400.

    Article  Google Scholar 

  29. Justement, L.B., Campbell, K.S., Chien, N.C. and Cambier, J.C. 1991. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252: 1839–1842.

    Article  CAS  Google Scholar 

  30. Kashles, O., Yarden, Y., Fischer, R., Ullrich, A. and Schlessinger, J. 1991. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization. Molec. Cell. Biol. 11: 1454–1463.

    Article  CAS  Google Scholar 

  31. Wahl, M.I., Daniel, T.O. and Carpenter, G. 1988. Antiphosphotyrosine recovery of phospholipase C activity after EGF treatment of A-431 cells. Science 241: 968–970.

    Article  CAS  Google Scholar 

  32. Margolis, B., Li, N., Koch, A., Mohammadi, M., Hurwitz, D.R., Ziberstein, A., Ullrich, A., Pawson, T. and Schlessinger, J. 1990. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9: 4375–4380.

    Article  CAS  Google Scholar 

  33. Ellis, C., Moran, M., McCormick, F. and Pawson, T. 1990. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343: 377–381. 1990.

    Article  CAS  Google Scholar 

  34. Bjorge, J.D., Chan, T.-O., Antczak, M., Kung, H.-J. and Fujita, D.J. 1990. Activated type I phosphatidylinositol kinase is associated with the epidermal growth factor (EGF) receptor following EGF stimulation. Proc. Natl. Acad. Sci. USA. 87: 3816–3820.

    Article  CAS  Google Scholar 

  35. Pignataro, O.P. and Ascoli, M. 1990. Epidermal growth factor increases the labeling of phosphatidylinositol 3,4-bisphosphate in MA-10 Leydig tumor cells. J. Biol. Chem. 265: 1718–1723.

    CAS  PubMed  Google Scholar 

  36. Koch, C.A., Anderson, D., Moran, M.F., Ellis, C. and Pawson, T. 1991. SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science 252: 668–674.

    Article  CAS  Google Scholar 

  37. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. and Tsien, R.Y. 1991. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349: 694–697.

    Article  CAS  Google Scholar 

  38. Gorman, C.M., Merlino, G. T., Willingham, M.C., Pastan, I. and Howard, B.H., 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA. 79: 6777–6781.

    Article  CAS  Google Scholar 

  39. Schlessinger, J., Schechter, Y., Willingham, M.C. and Pastan, I. 1978. Direct visualization of binding, aggregation and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. Natl. Acad. Sci. USA. 75: 2659–2663.

    Article  CAS  Google Scholar 

  40. Zidovetzki, R., Yarden, Y., Schlessinger, J. and Jovin, T. M. 1986. Microaggregation of hormone-occupied epidermal growth factor receptors on plasma membrane preparations. EMBO J. 5: 247–250.

    Article  CAS  Google Scholar 

  41. Neuberger, M.S. 1983. Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J. 2: 1373–1378.

    Article  CAS  Google Scholar 

  42. Bothwell, A.L.M., Paskind, M., Reth, M., Imanishi-Kari, T., Rajewsky, K. and Baltimore, D. 1981. Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a γ2a variable region. Cell 24: 625–637.

    Article  CAS  Google Scholar 

  43. Pohlit, H. M., Haas, W. and von-Boehmer, H. 1979. Haptenation of viable biological carriers, In: Immunological Methods. Lefkovits, I. and Pernis, D. (Eds.). Academic Press, Inc., NY. 181–188.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, H., Kikuchi, M., Yagi, S. et al. Antigen Responsive Antibody–Receptor Kinase Chimera. Nat Biotechnol 10, 430–433 (1992). https://doi.org/10.1038/nbt0492-430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0492-430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing