Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bactericidal antisense effects of peptide–PNA conjugates

Abstract

Antisense peptide nucleic acids (PNAs) can specifically inhibit Escherichia coli gene expression and growth and hold promise as anti-infective agents and as tools for microbial functional genomics. Here we demonstrate that chemical modification improves the potency of standard PNAs. We show that 9- to 12-mer PNAs, especially when attached to the cell wall/membrane-active peptide KFFKFFKFFK, provide improvements in antisense potency in E. coli amounting to two orders of magnitude while retaining target specificity. Peptide–PNA conjugates targeted to ribosomal RNA (rRNA) and to messenger RNA (mRNA) encoding the essential fatty acid biosynthesis protein Acp prevented cell growth. The anti-acpP PNA at 2 μM concentration cured HeLa cell cultures noninvasively infected with E. coli K12 without any apparent toxicity to the human cells. These results indicate that peptides can be used to carry antisense PNA agents into bacteria. Such peptide–PNA conjugates open exciting possibilities for anti-infective drug development and provide new tools for microbial genetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Chemical structure of DNA and PNA oligomers, with the bases indicated as b.
Figure 2: LacZ expression and inhibition in E. coli with a range of different-sized PNAs.
Figure 3: LacZ expression and inhibition in E. coli with PNA, free peptide, and a peptide–PNA conjugate.
Figure 4: E. coli K12 growth and inhibition in MH broth by an anti-acpP peptide–PNA conjugate.
Figure 5: Bactericidal antisense effects of an anti-acpP PNA against E. coli.
Figure 6: HeLa cell culture, noninvasive E. coli infection, and antimicrobial PNA treatment.

Similar content being viewed by others

References

  1. Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375–382 (1994).

    Article  CAS  Google Scholar 

  2. Tan, Y.T., Tillett, D.J. & McKay, I.A. Molecular strategies for overcoming antibiotic resistance in bacteria. Mol. Med. Today 6, 309–314 (2000).

    Article  CAS  Google Scholar 

  3. Murray, R.W., Schaadt, R.D., Zurenko, G.E. & Marotti, K.R. Ribosomes from an oxazolidinone-resistant mutant confer resistance to eperezolid in a Staphylococcus aureus cell-free transcription–translation assay. Antimicrob. Agents Chemother. 42, 947–950 (1998).

    Article  CAS  Google Scholar 

  4. Good, L. & Nielsen, P.E. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. 16, 355–358 (1998).

    Article  CAS  Google Scholar 

  5. Good, L. & Nielsen, P.E. Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. USA 95, 2073–2076 (1998).

    Article  CAS  Google Scholar 

  6. White, D.G. et al. Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. Antimicrob. Agents Chemother. 41, 2699–2704 (1997).

    Article  CAS  Google Scholar 

  7. Harth, G., Zamecnik, P.C., Tang, J.Y., Tabatadze, D. & Horwitz, M.A. Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-l-glutamate/glutamine cell wall structure, and bacterial replication. Proc. Natl. Acad. Sci. USA 97, 418–423 (2000).

    Article  CAS  Google Scholar 

  8. Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  Google Scholar 

  9. Wittung, P., Nielsen, P.E., Buchardt, O., Egholm, M. & Norden, B. DNA-like double helix formed by peptide nucleic acid. Nature 368, 561–563 (1994).

    Article  CAS  Google Scholar 

  10. Jensen, K.K., Orum, H., Nielsen, P.E. & Norden, B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36, 5072–5077 (1997).

    Article  CAS  Google Scholar 

  11. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  12. Giesen, U. et al. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 26, 5004–5006 (1998).

    Article  CAS  Google Scholar 

  13. Demidov, V.V. et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).

    Article  CAS  Google Scholar 

  14. Nielsen, P.E., Haaima, G. Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 96, 73–78 (1997).

    Article  Google Scholar 

  15. Hanvey, J.C. et al. Antisense and antigene properties of peptide nucleic acids. Science 258, 1481–1485 (1992).

    Article  CAS  Google Scholar 

  16. Knudsen, H. & Nielsen, P.E. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res. 24, 494–500 (1996).

    Article  CAS  Google Scholar 

  17. Norton, J.C., Piatyszek, M.A., Wright, W.E., Shay, J.W. & Corey, D.R. Inhibition of human telomerase activity by peptide nucleic acids. Nat. Biotechnol. 14, 615–619 (1996).

    Article  CAS  Google Scholar 

  18. Taylor, R.W., Chinnery, P.F., Turnbull, D.M. & Lightowlers, R.N. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat. Genet. 15, 212–215 (1997).

    Article  CAS  Google Scholar 

  19. Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264, 382–388 (1994).

    Article  CAS  Google Scholar 

  20. Good, L., Sandberg, R., Larsson, O., Nielsen, P.E. & Wahlestedt, C. Antisense PNA effects in Escherichia coli are limited by the outer- membrane LPS layer. Microbiology 146, 2665–2670 (2000).

    Article  CAS  Google Scholar 

  21. Sekiguchi, M. & Iida, S. Mutants of Escherichia coli permeable to actinomycin. Proc. Natl. Acad. Sci. USA 58, 2315–2320 (1967).

    Article  CAS  Google Scholar 

  22. Wagner, R.W., Matteucci, M.D., Grant, D., Huang, T. & Froehler, B.C. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nat. Biotechnol. 14, 840–844 (1996).

    Article  CAS  Google Scholar 

  23. Hancock, R.E. Peptide antibiotics. Lancet 349, 418–422 (1997).

    Article  CAS  Google Scholar 

  24. Schwarze, S.R., Hruska, K.A. & Dowdy, S.F. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10, 290–295 (2000).

    Article  CAS  Google Scholar 

  25. Aldrian-Herrada, G. et al. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res. 26, 4910–4916 (1998).

    Article  CAS  Google Scholar 

  26. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861 (1998).

    Article  CAS  Google Scholar 

  27. Cutrona, G. et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol. 18, 300–303 (2000)

    Article  CAS  Google Scholar 

  28. Vaara, M. & Porro, M. Group of peptides that act synergistically with hydrophobic antibiotics against gram-negative enteric bacteria. Antimicrob. Agents Chemother. 40, 1801–1805 (1996).

    Article  CAS  Google Scholar 

  29. Cronan, J.E. & Rock, C.O. Biosynthesis of membrane lipids. In Escherichia coli and Salmonella: cellular and molecular biology, Edn. 2. (eds Neidhardt, F.C. & Curtiss, R.) 612–636 (American Society for Microbiology, Washington, DC; 1996).

    Google Scholar 

  30. Christensen, L. et al. Solid-phase synthesis of peptide nucleic acids. J. Peptide Sci. 1, 175–183 (1995).

    Article  CAS  Google Scholar 

  31. Miller, J.H. Experiments in molecular genetics. (Cold Spring Harbor Press, Cold Spring Harbor, NY; 1972).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Danish Biotechnology Program, Pharmacia Corporation and the Swedish Foundation for Strategic Research

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liam Good or Peter E. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, L., Awasthi, S., Dryselius, R. et al. Bactericidal antisense effects of peptide–PNA conjugates. Nat Biotechnol 19, 360–364 (2001). https://doi.org/10.1038/86753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing