Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New Perspectives on the Structure and Function of Ubiquitin

Abstract

Ubiquitin has been suggested to play a key role in a wide variety of essential cellular functions ranging from differential regulation of gene expression to protein degradation. Recent studies on natural and synthetic ubiquitin gene fusions have led to important discoveries concerning novel functions for the ubiquitin system in cells, mechanisms of proteolytic processing, and the development of a ubiquitin fusion technology for augmenting the expression of heterologous gene products in bacteria and yeast. Furthermore, studies involving site-directed mutagenesis and two-dimensional NMR have proven ubiquitin to be an excellent model for protein engineering and have led to important discoveries concerning its mechanism of action in ATP-dependent proteolysis. Finally, the recent identification and characterization of ubiquitin carboxyl extension proteins as ribosomal proteins has opened up an even newer area of ubiquitin-related research and has helped to explain the mechanisms involved in increasing the expression of heterologous gene products made as ubiquitin fusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Finley, D. and Varshavsky, A. 1985. The ubiquitin system: Functions and mechanisms. Trends Biochem. Sci. 10: 343–347.

    Article  CAS  Google Scholar 

  2. Hershko, A. and Ciechanover, A. 1986. The ubiquitin pathway for the degradation of intracellular proteins. Proc. Nucleic Acid Res. Mol. Biol. 33: 19–56.

    Article  CAS  Google Scholar 

  3. Rechsteiner, M. 1987. Ubiquitin-mediated pathways for intracellular proteolysis. Ann. Rev. Cell Biol. 3: 1–30.

    Article  CAS  Google Scholar 

  4. Hershko, A. 1988. Ubiquitin-mediated protein degradation. J. Biol. Chem. 263: 15237–15240.

    CAS  PubMed  Google Scholar 

  5. Ozkaynak, E., Finley, D., Solomon, M-J. and Varshavsky, A. 1987. The yeast ubiquitin genes: A family of natural gene fusions. EMBO J. 6: 1429–1439.

    Article  CAS  Google Scholar 

  6. Muller-Taubenberger, A., Westphal, M., Jaeger, E., Noegel, A. and Gerisch, G. 1988. Complete cDNA sequence of a distyostelium ubiquitin with a carboxy-terminal tail and identification of the protein using an anti-peptide antibody. FEBS 229: 273–278.

    Article  CAS  Google Scholar 

  7. Ohmachi, T., Giorda, R., Shaw, D.R. and Ennis, H.L. 1989. Molecular organization of developmentally regulated Dictyostelium discoideum ubiquitin cDNAs. Biochemistry 28: 5226–5231.

    Article  CAS  Google Scholar 

  8. Gausing, K. and Barkardottir, R. 1986. Structure and expression of ubiquitin genes in higher plants. Eur. J. Biochem. 158: 57–62.

    Article  CAS  Google Scholar 

  9. Dworkin-Rastl, E., Shrutkowski, A. and Dworkin, M.B. 1984. Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence. Cell 39: 321–325.

    Article  CAS  Google Scholar 

  10. Bond, U. and Schlesinger, M.J. 1985. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol. Cell Biol. 5: 949–959.

    Article  CAS  Google Scholar 

  11. Arribas, C., Sampedro, J. and Izquierdo, M. 1986. The ubiquitin genes in D. melanogaster: Transcription and polymorphism. Biochem-Biophys. Acta 868: 119–127.

    CAS  Google Scholar 

  12. Swindle, J., Ajioka, J., Eisen, H., Sanwal, B., Jacquemot, C., Browder, Z. and Buck, G. 1988. The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J. 7: 1121–1127.

    Article  CAS  Google Scholar 

  13. Wiborg, O., Pedersen, M.S., Wind, A., Berglund, L.E., Marcker, K.A. and Vuust, J. 1985. The human ubiquitin gene family: Some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4: 755–759.

    Article  CAS  Google Scholar 

  14. Baker, R.T. and Board, P.G. 1987. The human ubiquitin gene family: Structure of a gene and pseudogenes from the UbB subfamily. Nucleic Acids Res. 15: 443–463.

    Article  CAS  Google Scholar 

  15. Lund, P.K., Moats-Staats, B.M., Simmons, J.G., Hoyt, E., D'Ercole, A.J., Martin, F. and Van Wyk, J.J. 1985. Nucleotide sequence analysis of a DNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor. J. Biol. Chem. 260: 7609–7613.

    CAS  PubMed  Google Scholar 

  16. Salveson, G., Lloyd, C. and Farley, D. 1987. cDNa encoding a human homolog of yeast ubiquitin 1. Nucleic Acids Res. 15: 5485–5486.

    Article  Google Scholar 

  17. St. John, T., Gallatin, W.M., Siegelman, M., Smith, H.T., Fried, V.A. and Weissman, I.L. 1986 Expression cloning of a lymphocyte homing receptor cDNA. Ubiquitin is the reactive species. Science 231: 845–850.Ch.

    Article  Google Scholar 

  18. Wool, I.G. 1979. The structure and function of eukaryotic ribosomes. Ann. Rev. Biochem. 48: 719–754.

    Article  CAS  Google Scholar 

  19. Long, C.W., Henderson, L.E. and Oroszlan, S. 1980. Isolation and characterization of low molecular weight DNA-binding proteins from retroviruses. Virology 104: 491–496.

    Article  CAS  Google Scholar 

  20. Berg, J.M. 1986. Potential metal-binding domains in nucleic acid binding proteins. Science 232: 485–487.

    Article  CAS  Google Scholar 

  21. Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A. and Wright, P.E. 1989. Three-dimensional structure solution of a single zinc finger DNA binding domain. Science 245: 635–637.

    Article  CAS  Google Scholar 

  22. Miller, J., McLachlan, A.D. and Klug, A. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus ocytes. EMBO J. 4: 1609–1614.

    Article  CAS  Google Scholar 

  23. Monia, B.P., Haskell, K.M., Ecker, J.R., Ecker, D.J. and Crooke, S.T. 1989. Chromosomal mapping of the ubiquitin gene family in Saccharomyces cerevisiae by pulsed field gel electrophoresis. Nucleic Acids Res. 17: 3611.

    Article  CAS  Google Scholar 

  24. Monia, B.P., Koser, P.L., Ecker, D.J. and Crooke, S.T. 1989. Studies on the expression of ubiquitin genes in yeast and mammalian cells. Submitted.

    Google Scholar 

  25. Muller-Taubenberger, A., Hagmann, J., Noegel, A. and Gerisch, G. 1988. Ubiquitin gene expression in Dictyostelium is induced by heat and cold shock, cadmium, and inhibitors of protein synthesis. J. Cell Sci. 90: 51–58.

    PubMed  Google Scholar 

  26. Finley, D., Ozkaynak, E. and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other tresses. Cell 48: 1035–1046.

    Article  CAS  Google Scholar 

  27. Monia, B.P., Ecker, D.J., Jonnalagadda, S., Marsh, J., Gotlib, L., Butt, T.R. and Crooke, S.T. 1989. Gene synthesis, expression and processing of human ubiquitin carboxyl extension proteins. J. Biol. Chem. 264: 4093–4103.

    CAS  PubMed  Google Scholar 

  28. Mayer, A.N. and Wilkinson, K.D., 1989. Detection, resolution and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus. Biochemistry 28: 166–172.

    Article  CAS  Google Scholar 

  29. Jonnalagadda, S., Butt, T.R., Monia, B.P., Mirabelli, C.K., Gotlib, L., Ecker, D.J. and Crooke, S.T. 1989. Multiple (αNH-Ubiquitin) protein endoproteases in cells. J. Biol. Chem. 264: 10637–10642.

    CAS  PubMed  Google Scholar 

  30. Redman, K.L. and Rechsteiner, M. 1988. Extended reading frame of a ubiquitin gene encodes a stable, conserved, basic protein. J. Biol. Chem. 263: 4926–4931.

    CAS  PubMed  Google Scholar 

  31. Monia, B.P., Ecker, D.J. and Crooke, S.T. 1989. Identification of yeast CEP52 as a novel ribosomal protein of the large subunit. Submitted.

    Google Scholar 

  32. Jonnalagadda, S., Butt, T.R., Marsh, J., Sternberg, E.J., Mirabelli, C.K., Ecker, D.J. and Crooke, S.T. 1987. Expression and accurate processing of yeast pentaubiquitin in E. coli. J. Biol. Chem. 262: 17750–17756.

    CAS  PubMed  Google Scholar 

  33. Lbpez-Otin, C., Simon-Mateo, C., Martinez, L. and Vinuela, E., 1989. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J. Biol. Chem. 264: 9107–9110.

    Google Scholar 

  34. Miller, H.I., Henzel, W.J., Ridgway, J.B., Kuang, W.J., Chisolm, V. and Liu, C.C. 1989. Cloning and expression of a yeast ubiquitin-protein cleaving activity in Escherichia coli. Bio/Technology 7: 698–704.

    CAS  Google Scholar 

  35. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. 1987. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194: 531–544.

    Article  CAS  Google Scholar 

  36. Weber, P., Brown, S. and Mueller, L. 1987. 1H-NMR resonance assignments and secondary structure identification of human ubiquitin. Biochemistry 26: 7282–7290.

    Article  CAS  Google Scholar 

  37. Finley, D., Ciechanover, A. and Varshavsky, A. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37: 434–55.

    Article  Google Scholar 

  38. Bachmair, A., Finley, D. and Varshavsky, A. 1986. In vivo half life of a protein is a function of its amino-terminal residue. Science 234: 179–186.

    Article  CAS  Google Scholar 

  39. Hershko, A., Heller, H., Eytan, E., Kaklij, G. and Rose, I.A. 1984. Role of the α-amino group of protein in ubiquitin-mediated protein breakdown. Proc. Natl. Acad. Sci. USA 81: 70212–7025.

    Google Scholar 

  40. Ferber, S. and Ciechanover, A. 1986. Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin- and ATP-dependent proteolytic system. J. Biol. Chem. 261: 3128–3134.

    CAS  PubMed  Google Scholar 

  41. Ferber, S. and Ciechanover, A. 1987. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326: 808–811.

    Article  CAS  Google Scholar 

  42. Mayer, A., Siegel, N.R., Schwartz, A.L., Ciechanover, A. 1989. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244: 1480–1483.

    Article  CAS  Google Scholar 

  43. Hershko, A., Heller, H., Eytan, E. and Reiss, Y. 1986. The protein substrate binding site of the ubiquitin-proteins ligase system. J. Biol. Chem. 261: 11992–11999.

    CAS  PubMed  Google Scholar 

  44. Varshavsky, A., Bachmair, A., Finley, D., Gonda, D. and Wunning, I. 1988. Ubiquitin. Rechstiner, M. (Ed.). Plenum Publishing Corp., New York.

    Google Scholar 

  45. Ecker, D.J., Butt, T.R., Marsh, J., Sternberg, E.J., Margolis, N., Monia, B.P., Jonnalagadda, S., Khan, M.I., Weber, D.L., Mueller, L. and Crooke, S.T. 1987. Gene synthesis, expression, structures and functional activities of site-specific mutants of ubiquitin. J. Biol. Chem. 262: 14213–14221.

    CAS  PubMed  Google Scholar 

  46. Haas, A.L. and Bright, P.M. 1985. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 260: 12464–12473.

    CAS  PubMed  Google Scholar 

  47. Wilkinson, K.D. and Mayer, A.N. 1986. Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys. 250: 390–399.

    Article  CAS  Google Scholar 

  48. Ecker, D.J., Butt, T.R., Marsh, J., Sternberg, E.J., Shatzman, A., Dixon, J.S. and Crooke, S.T. 1989. Ubiquitin function studied by disulfide engineering. J. Biol. Chem. 264: 1887–1893.

    CAS  Google Scholar 

  49. Hershko, A. and Heller, H. 1985. Occurence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Commun. 128: 1079–1086.

    Article  CAS  Google Scholar 

  50. Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Conda, D.K. and Varshavsky, A. 1989. A multiubiquitin chain is confined to a specific lysine in a targeted short-lived protein. Science 243: 1576–1583.

    Article  CAS  Google Scholar 

  51. Goldknopf, I.L. and Busch, H. 1977. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl. Acad. Sci. USA 74: 864–868.

    Article  CAS  Google Scholar 

  52. Mueller, R.D., Yasuda, H., Hatch, C.L., Bonner, W.M., Bradbury, E.M. 1985. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum: Disappearance of these proteins at metaphare and reappearance at anaphase. J. Biol. Chem. 260: 5147–5153.

    CAS  PubMed  Google Scholar 

  53. Levinger, L. and Varshavsky, A. 1982. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Diosophila genome. Cell 28: 375–385.

    Article  CAS  Google Scholar 

  54. Nickel, B.E., Allis, C.D. and Davie, J.R. 1989. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28: 958–963.

    Article  CAS  Google Scholar 

  55. Nickel, B.E. and Davie, J.R. 1989. Structure of polyubiquitinated histone H2A. Biochemistry 28: 964–968.

    Article  CAS  Google Scholar 

  56. Redman, K.L. and Rechsteiner, M. 1989. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338: 438–440.

    Article  CAS  Google Scholar 

  57. Monia, B.P., Ecker, D.J., Finley, D. and Crooke, S.T. 1989. Complementation of a yeast ubiquitin carboxyl extension mutant by its human homolog. Submitted.

    Google Scholar 

  58. Finley, D., Barte, B. and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401.

    Article  CAS  Google Scholar 

  59. Butt, T.R., Jonnalagadda, S., Monia, B.P., Sternberg, E.J., Marsh, J., Stadel, J.M., Ecker, D.J. and Crooke, S.T. 1989. Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 2540–2544.

    Article  CAS  Google Scholar 

  60. Ecker, D.J., Stadel, J.M., Butt, T.R., Marsh, J.A., Monia, B.P., Powers, D.A., Gorman, J.A., Clark, P.E., Warren, F., Shatzman, A. and Crooke, S.T. 1989. Increasing gene expression in yeast by fusion to ubiquitin. J. Biol. Chem. 264: 7715–7719.

    CAS  PubMed  Google Scholar 

  61. Sabin, E.A., Lee-Ng, C.T., Shuster, J.R. and Barr, P.J. 1989. High-level expression and in vivo processing of chimeric ubiquitin fusion proteins in Saccharomyces cerevisiae. Bio Technology 7: 705–709.

    CAS  Google Scholar 

  62. Warner, J.R. 1982. The Molecular Biology of the Yeast Saccharomyces. Strathern, J. N., Jones, E. W., Broach, J. R. (Eds.). Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  63. Siegelman, M., Bond, M.W., Gallatin, W.M., St. John, T., Smith, H.T., Fried, V.A. and Weissman, I.L. 1986. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science 231: 823–829.

    Article  CAS  Google Scholar 

  64. Yardin, Y., Escobedo, J.A., Kuang, W.-J., Yang-Ferng, T.L., Daniel, T.O., Tremble, P.M., Cheng, E.Y., Ando, M.E., Harkins, R.N., Francke, U., Fried, V.A., Ullrich, A. and Williams, L.T. 1986. Structure of the receptor for platelet derived growth factor helps define a family of closely related growth factor receptors. Nature 323: 226–232.

    Article  Google Scholar 

  65. Leung, D.W., Spencer, S.A., Cachianes, G., Hammonds, R.G., Collings, C., Henzel, W.J., Barnard, R., Waters, M.J. and Wood, W.I. 1987. Growth hormone receptor and serum binding protein: Purification, cloning and expression. Nature 330: 537–543.

    Article  CAS  Google Scholar 

  66. Gorin, E. and Goodman, H.M. 1985. Turnover of growth hormone receptors in rat adipocytes. Endocrinology 116: 1796–1805.

    Article  CAS  Google Scholar 

  67. Huang, S.Y., Barnard, M.B., Xu, M., Matsui, S.I., Rose, S.M. and Garrard, W.T. 1986. The active immunoglobulin kappa chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc. Natl. Acad. Sci. USA 83: 3738–3742.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monia, B., Ecker, D. & Crooke, S. New Perspectives on the Structure and Function of Ubiquitin. Nat Biotechnol 8, 209–215 (1990). https://doi.org/10.1038/nbt0390-209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0390-209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing