Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells

Abstract

We describe here the development of a carbohydrate-based microarray to extend the scope of biomedical research on carbohydrate-mediated molecular recognition and anti-infection responses. We have demonstrated that microbial polysaccharides can be immobilized on a surface-modified glass slide without chemical conjugation. With this procedure, a large repertoire of microbial antigens (20,000 spots) can be patterned on a single micro-glass slide, reaching the capacity to include most common pathogens. Glycoconjugates of different structural characteristics are shown here to be applicable for microarray fabrication, extending the repertoires of diversity and complexity of carbohydrate microarrays. The printed microarrays can be air-dried and stably stored at room temperature for long periods of time. In addition, the system is highly sensitive, allowing simultaneous detection of a broad spectrum of antibody specificities with as little as a few microliters of serum specimen. Finally, the potential of carbohydrate microarrays is demonstrated by the discovery of previously undescribed cellular markers, Dex-Ids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immobilization of polysaccharides on a nitrocellulose-coated glass slide.
Figure 2: Immunological characterization of surface-immobilized dextran molecules.
Figure 3: A carbohydrate microarray characterization of human and murine antibodies.
Figure 4: An anti-α(1,6)dextran antibody cross-reacts with intestinal MAC1+ cells.
Figure 5: Groove-type and cavity-type anti-α(1,6)dextran antibodies recognize distinct cellular markers.

Similar content being viewed by others

References

  1. Feizi, T. The antigens Ii, SSEA-1 and ABH are in interrelated system of carbohydrate differentiation antigens expressed on glycosphingolipids and glycoproteins. Adv. Exp. Med. Biol. 152, 167–177 (1982).

    CAS  PubMed  Google Scholar 

  2. Crocker, P.R. & Feizi, T. Carbohydrate recognition systems: functional triads in cell–cell interactions. Curr. Opin. Struct. Biol. 6, 679–691 (1996).

    Article  CAS  Google Scholar 

  3. Focarelli, R., La Sala, G.B., Balasini, M. & Rosati, F. Carbohydrate-mediated sperm–egg interaction and species specificity: a clue from the Unio elongatulus model. Cells Tiss. Org. 168, 76–81 (2001).

    Article  CAS  Google Scholar 

  4. Rosati, F., Capone, A., Giovampaola, C.D., Brettoni, C. & Focarelli, R. Sperm–egg interaction at fertilization: glycans as recognition signals. Int. J. Dev. Biol. 44, 609–618 (2000).

    CAS  PubMed  Google Scholar 

  5. Feizi, T. Progress in deciphering the information content of the 'glycome'—a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000).

    Article  CAS  Google Scholar 

  6. Feizi, T. Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000).

    Article  CAS  Google Scholar 

  7. Hakomori, S. Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res. 45, 2405–2414 (1985).

    CAS  PubMed  Google Scholar 

  8. Sell, S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 21, 1003–1019 (1990).

    Article  CAS  Google Scholar 

  9. Adachi, M. et al. Expression of LeY antigen in human immunodeficiency virus-infected human T cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC). J. Exp. Med. 167, 323–331 (1988).

    Article  CAS  Google Scholar 

  10. Nakaishi, H., Sanai, Y., Shibuya, M., Iwamori, M. & Nagai, Y. Neosynthesis of neolacto- and novel ganglio-series gangliosides in a rat fibroblastic cell line brought about by transfection with the v-fes oncogene-containing Gardner–Arnstein strain feline sarcoma virus-DNA. Cancer Res. 48, 1753–1758 (1988).

    CAS  PubMed  Google Scholar 

  11. Schachter, H. & Jaeken, J. Carbohydrate-deficient glycoprotein syndrome type II. Biochim. Biophys. Acta 1455, 179–192 (1999).

    Article  CAS  Google Scholar 

  12. Karlsson, K.A., Angstrom, J., Bergstrom, J. & Lanne, B. Microbial interaction with animal cell surface carbohydrates. APMIS Suppl. 27, 71–83 (1992).

    CAS  PubMed  Google Scholar 

  13. Feizi, T. & Loveless, R.W. Carbohydrate recognition by Mycoplasma pneumoniae and pathologic consequences. Am. J. Respir. Crit. Care Med. 154, S133–136 (1996).

    Article  CAS  Google Scholar 

  14. Wang, D. & Kabat, E.A. Carbohydrate antigens (polysaccharides) In Structure of antigens, Vol. 3. (ed. M.H.V.V. Regenmortal) 247–276 (CRC Press, Boca Raton FL; 1996).

    Google Scholar 

  15. Finne, J., Leinonen, M. & Makela, P.H. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2, 355–357 (1983).

    Article  CAS  Google Scholar 

  16. Mandrell, R.E. et al. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect. Immun. 60, 1322–1328 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, D. et al. The repertoire of antibodies to a single antigenic determinant. Mol. Immunol. 28, 1387–1397 (1991).

    Article  CAS  Google Scholar 

  18. Jeanes, A. Immunochemical and related interactions with dextrans reviewed in terms of improved structural information. Mol. Immunol. 23, 999–1028 (1986).

    Article  CAS  Google Scholar 

  19. Cisar, J., Kabat, E.A., Dörner, M.M. & Liao, J. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J. Exp. Med. 142, 435–459 (1975).

    Article  CAS  Google Scholar 

  20. Wang, D. et al. Two families of monoclonal antibodies to α(1,6)dextran, VH19.1.2 and VH9.14.7, show distinct patterns of Jκ and JH minigene usage and amino acid substitutions in CDR3. J. Immunol. 145, 3002–3010 (1990).

    CAS  PubMed  Google Scholar 

  21. Matsuda, T. & Kabat, E.A. Variable region cDNA sequences and antigen binding specificity of mouse monoclonal antibodies to isomaltosyl oligosaccharides coupled to proteins. T-dependent analogues of α(1,6)dextran. J. Immunol. 142, 863–870 (1989).

    CAS  PubMed  Google Scholar 

  22. Chen, H.T., Makover, S.D. & Kabat, E.A. Immunochemical studies on monoclonal antibodies to stearyl-isomaltotetraose from C58/J and a C57BL/10 nude mouse. Mol. Immunol. 24, 333–338 (1987).

    Article  CAS  Google Scholar 

  23. Kabat, E.A. et al. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-d-galactose and 4,6- pyruvylated-d-galactose. J. Exp. Med. 152, 979–995 (1980).

    Article  CAS  Google Scholar 

  24. Kabat, E.A., Liao, J., Sherman, W.H. & Osserman, E.F. Immunochemical characterization of the specificities of two human monoclonal IgMs reacting with chondroitin sulfates. Carbohydr. Res. 130, 289–297 (1984).

    Article  CAS  Google Scholar 

  25. Kabat, E.A. et al. The epitope associated with the binding of the capsular polysaccharide of the group B meningococcus and of Escherichia coli K1 to a human monoclonal macroglobulin, IgMNOV. J. Exp. Med. 168, 699–711 (1988).

    Article  CAS  Google Scholar 

  26. Liao, J. et al. Characterization of a human monoclonal immunoglobulin M (IgM) antibody (IgMBEN) specific for Vi capsular polysaccharide of Salmonella typhi. Infect. Immun. 63, 4429–4432 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Avrameas, S. Multispecific antibodies. Int. Rev. Immunol. 3, 1–146 (1988).

    Article  CAS  Google Scholar 

  28. Herzenberg, L.A. & Herzenberg, L.A. Toward a layered immune system. Cell 59, 953–954 (1989).

    Article  CAS  Google Scholar 

  29. Thompson, K.M. et al. Human monoclonal antibodies specific for blood group antigens demonstrate multispecific properties characteristic of natural autoantibodies. Immunology 76, 146–157 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorpe, S.J. et al. Human monoclonal antibodies encoded by the V4-34 gene segment show cold agglutinin activity and variable multireactivity which correlates with the predicted charge of the heavy-chain variable region. Immunology 93, 129–136 (1998).

    Article  CAS  Google Scholar 

  31. Leteux, C. et al. The cysteine-rich domain of macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewisa and Lewisx types in addition to the sulfated N-glycans of lutropin. J. Exp. Med. 191, 1117–1126 (2000).

    Article  CAS  Google Scholar 

  32. Sharon, J., Kabat, E.A. & Morrison, S.L. Association constants of hybridoma antibodies specific for α(1→6) linked dextran determined by affinity electrophoresis. Mol. Immunol. 19, 389–397 (1982).

    Article  CAS  Google Scholar 

  33. Spiro, R.G. Glucose residues as key determinants in the biosynthesis and quality control of glycoproteins with N-linked oligosaccharides. J. Biol. Chem. 275, 35657–35660 (2000).

    Article  CAS  Google Scholar 

  34. Zuber, C., Spiro, M.J., Guhl, B., Spiro, R.G. & Roth, J. Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol. Biol. Cell 11, 4227–4240 (2000).

    Article  CAS  Google Scholar 

  35. Howard, J. T cell-independent responses to polysaccharides: their nature and delayed ontogeny In Towards better carbohydrate vaccines. Proceedings of a meeting organized by the World Health Organization, 9–11 October 1986, Geneva. (eds Bell, R. & Torrigiani, G.) 221–229 (John Wiley & Sons, New York, NY; 1987).

    Google Scholar 

  36. Lai, E. & Kabat, E.A. Immunochemical studies of conjugates of isomaltosyl oligosaccharides to lipid: production and characterization of mouse hybridoma antibodies specific for stearyl-isomaltosyl oligosaccharides. Mol. Immunol. 22, 1021–1037 (1985).

    Article  CAS  Google Scholar 

  37. O'Shannessy, D.J., Dobersen, M.J. & Quarles, R.H. A novel procedure for labeling immunoglobulins by conjugation to oligosaccharide moieties. Immunol. Lett. 8, 273–277 (1984).

    Article  CAS  Google Scholar 

  38. Wang, D., Wells, S.M., Stall, A.M. & Kabat, E.A. Reaction of germinal centers in the T-cell-independent response to the bacterial polysaccharide α(1→6)dextran. Proc. Natl. Acad. Sci. USA 91, 2502–2506 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the late Professor Elvin A. Kabat and his previous students, postdoctoral fellows, and collaborators for their contributions to the collection of carbohydrate antigens and antibodies that were applied in this study. This work is supported by research grants of NIH (AI45326) and Compass Pacific to D.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denong Wang.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Liu, S., Trummer, B. et al. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat Biotechnol 20, 275–281 (2002). https://doi.org/10.1038/nbt0302-275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing