Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide chips for the quantitative evaluation of protein kinase activity

Abstract

Peptide chips are an emerging technology that could replace many of the bioanalytical methods currently used in drug discovery, diagnostics, and cell biology. Despite the promise of these chips, their development for quantitative assays has been limited by several factors, including a lack of well-defined surface chemistries to immobilize peptides, the heterogeneous presentation of immobilized ligands, and nonspecific adsorption of protein to the substrate. This paper describes a peptide chip that overcomes these limitations, and demonstrates its utility in activity assays of the nonreceptor tyrosine kinase c-Src. The chip was prepared by the Diels–Alder-mediated immobilization of the kinase substrate AcIYGEFKKKC-NH2 on a self-assembled monolayer of alkanethiolates on gold. Phosphorylation of the immobilized peptides was characterized by surface plasmon resonance, fluorescence, and phosphorimaging. Three inhibitors of the enzyme were quantitatively evaluated in an array format on a single, homogeneous substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptide chip chemistry.
Figure 2: Characterization of the enzymatic phosphorylation of peptide chips by c-Src.
Figure 3: Scheme for the quantitative evaluation of kinase inhibitors in an array format.
Figure 4: Evaluation of three inhibitors of c-Src on a single peptide chip.
Figure 5: Microarray presenting multiple peptides and small molecules.

Similar content being viewed by others

References

  1. Eisen, M.B. & Brown, P.O. DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999).

    Article  CAS  Google Scholar 

  2. Lee, P.S. & Lee, K.H. Genomic analysis. Curr. Opin. Biotechnology 11, 171–175 (2000).

    Article  Google Scholar 

  3. Zhu, H. & Snyder, M. Protein arrays and microarrays. Curr. Opin. Chem. Biol. 5, 40–45 (2001).

    Article  CAS  Google Scholar 

  4. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  5. Arenkov, P. et al. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131 (2000).

    Article  CAS  Google Scholar 

  6. Lueking, A. et al. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111 (1999).

    Article  CAS  Google Scholar 

  7. Wenschuh, H. et al. Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 58, 188–206 (2000).

    Article  Google Scholar 

  8. Reineke, U., Volkmer-Engert, R. & Schneider-Mergener, J. Applications of peptide arrays prepared by the SPOT technology. Curr. Opin. Biotechnol. 12, 59–64 (2001).

    Article  CAS  Google Scholar 

  9. Falsey, J.R., Renil, M., Park, S., Li, S.J. & Lam, K.S. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconj. Chem. 12, 346–353 (2001).

    Article  CAS  Google Scholar 

  10. Himpel, S. et al. Specificity determinants of substrate recognition by the protein kinase DYRK1A. J. Biol. Chem. 275, 2431–2438 (2000).

    Article  CAS  Google Scholar 

  11. Braunwalder, A.F. et al. A solid-phase assay for the determination of protein tyrosine kinase activity of c-src using scintillating microtitration plates. Anal. Biochem. 234, 23–26 (1996).

    Article  CAS  Google Scholar 

  12. Tegge, W., Frank, R., Hofmann, F. & Dostmann, W.R. Determination of cyclic nucleotide–dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry 87, 99–106 (1995).

    Google Scholar 

  13. Duan, Y. & Laursen, R.A. Protease substrates specificity mapping using membrane-bound peptides. Anal. Biochem. 216, 431–438 (1994).

    Article  CAS  Google Scholar 

  14. Gan, Z.B., Marquardt, R.R. & Xiao, H. Protease and protease inhibitor assays using biotinylated casein coated on a solid phase. Anal. Biochem. 268, 151–156 (1999).

    Article  CAS  Google Scholar 

  15. Mrksich, M. & Whitesides, G.M. Using self-assembled monolayers that present oligo(ethylene glycol) groups to control the interactions of proteins with surfaces. ACS Symp. Ser. 680, 361–373 (1997).

    Article  CAS  Google Scholar 

  16. Vijayendran, R.A. & Leckband, D.E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).

    Article  CAS  Google Scholar 

  17. Mrksich, M. A surface chemistry approach to studying cell adhesion. Chem. Soc. Rev. 29, 267–273 (2000).

    Article  CAS  Google Scholar 

  18. Green, R.J. et al. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21, 1823–1835 (2000).

    Article  CAS  Google Scholar 

  19. Rich, R.L. & Myszka, D.G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11, 54–61 (2000).

    Article  CAS  Google Scholar 

  20. Yousaf, M.N., Houseman, B.T. & Mrksich, M. Turning on cell migration with electroactive substrates. Angew. Chemie Int. Ed. 40, 1093–1096 (2001).

    Article  CAS  Google Scholar 

  21. Pale-Grosdemange, C., Simon, E.S., Prime, K.L & Whitesides, G.M. Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)2(OCH2CH2)mOH. J. Am. Chem. Soc. 113, 12–20 (1991).

    Article  CAS  Google Scholar 

  22. Yousaf, M.N. & Mrksich, M. Diels–Alder reaction for the selective immobilization of protein to electroactive self-assembled monolayers. J. Am. Chem. Soc. 121, 4286–4287 (1999).

    Article  CAS  Google Scholar 

  23. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signaling. Nature 373, 536–539 (1995).

    Article  CAS  Google Scholar 

  24. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).

    Article  CAS  Google Scholar 

  25. Kemp, B.E., Graves, D.J., Benjamini, E. & Krebs, E.G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP–dependent protein kinase. J. Biol. Chem. 252, 4888–4894 (1977).

    CAS  PubMed  Google Scholar 

  26. Cox, S. & Taylor, S.S. Kinetic analysis of cAMP-dependent protein kinase: mutations at histidine 87 affect peptide binding and pH dependence. Biochemistry 34, 16203–16209 (1995).

    Article  CAS  Google Scholar 

  27. Robinson, S.P., Petty, B.A. & Dean, B.J. Enzyme, whole cell and in vivo tumor models to identify and assess inhibitors of pp60 (c-Src). Int. J. Oncol. 2, 253–259 (1993).

    CAS  PubMed  Google Scholar 

  28. Golomb, G. & Fishbein, I. Tyrphostins, inhibitors of protein tyrosine kinases in restenosis. Adv. Drug Deliv. Rev. 24, 53–62 (1997).

    Article  CAS  Google Scholar 

  29. Hanke, J.H. et al. Discovery of a novel, potent, and Src family–selective tyrosine kinase inhibitor: study of Lck- and Fyn-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  30. Houseman, B. T. & Mrksich, M. The microenvironment of Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 22, 943–955 (2001).

    Article  CAS  Google Scholar 

  31. Aebersold, R. & Goodlett, D.R. Mass spectrometry in proteomics. Chem. Rev. 101, 269–296 (2001).

    Article  CAS  Google Scholar 

  32. Hergenrother, P.J., Depew, K.M. & Schreiber, S.L. Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J. Am. Chem. Soc. 122, 7849–7850 (2000).

    Article  CAS  Google Scholar 

  33. Maly, D.J., Choong, I.C. & Ellman, J.A. Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl. Acad. Sci. USA 97, 2419–2424 (2000).

    Article  CAS  Google Scholar 

  34. Houseman, B.T. & Mrksich, M. Efficient solid-phase synthesis of peptide-substituted alkanethiols for the preparation of substrates that support the adhesion of cells. J. Org. Chem. 63, 7552–7555 (1998).

    Article  CAS  Google Scholar 

  35. Lahiri, J., Isaacs, L., Tien, J. & Whitesides, G.M. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal. Chem. 71, 777–790 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by DARPA (N00173-01-1-G010) and the National Science Foundation (MRSEC DMR-9808595). We thank P. Domer for use of the Affymetrix arrayer and E. Cook for access to the Biomek robot. J.H.H. and S.J.K. are supported by the Merck Genome Research Institute and the James S. McDonnell Foundation. B.T.H. is supported by MD/PhD Training Grant HD-09007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Mrksich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houseman, B., Huh, J., Kron, S. et al. Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 20, 270–274 (2002). https://doi.org/10.1038/nbt0302-270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing