Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland

Abstract

We have investigated, in mice, an in vivo method for producing low–lactose milk, based on the creation of transgenic animals carrying a hybrid gene in which the intestinal lactase–phlorizin hydrolase cDNA was placed under the control of the mammary–specific α–lactalbumin promoter. Transgenic females expressed lactase protein and activity during lactation at the apical side of mammary alveolar cells. Active lactase was also secreted into milk, anchored in the outer membrane of fat globules. Lactase synthesis in the mammary gland caused a significant decrease in milk lactose (50–85%) without obvious changes in fat and protein concentrations. Sucklings nourished with low–lactose milk developed normally. Hence, these data validate the use of transgenic animals expressing lactase in the mammary gland to produce low–lactose milk in vivo, and they demonstrate that the secretion of an intestinal digestive enzyme into milk can selectively modify its composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic expression of lactase in the mammary gland of transgenic αLc/LPHp mice.
Figure 2: Histologic detection of lactase and α–lactalbumin in the mammary gland of αLc/LPHp–1 mice.
Figure 3: Lactase expression in the milk of αLc/LPHp females.
Figure 4: (A) Milk proteins (70 μg per lane) from αLc/LPHp–1 to αLc/LPHp–4 females at day 10 of lactation (lanes 1–4) and from a control nontransgenic littermate (lane 5) were separated by 12% SDS–PAGE and visualized by Coomasie blue staining.

Similar content being viewed by others

References

  1. Mercier, J.C. 1986. Genetic engineering applied to milk producing animals: some expectations, pp. 122–131 in Exploiting technologies in animal breeding–genetic development. Smith, C., King, J.W.B., and McKays, J.C. (eds.). Oxford University Press, Oxford, UK.

    Google Scholar 

  2. National Dairy Council. 1985. Nutritional implications of lactose and lactase activity. Dairy Counc. Dig. 56:25–30.

  3. Mepham, T.B. 1987. The composition of milks, pp. 30–50 in Physiology of lactation. Mepham, T.B. (ed.). Open University Press, Milton Keynes, PA.

    Google Scholar 

  4. Sahi, T. 1994. Genetics and epidemiology of adult–type hypolactasia. Scand. J. Gastroenterol. 29:7–20.

    Article  Google Scholar 

  5. Suarez, F.L., Savaiano, D.A., and Levitt, M.D. 1995. The treatment of lactose intolerance. Aliment. Pharmacol. Ther. 9:589–597.

    Article  CAS  PubMed  Google Scholar 

  6. Villako, K. and Maaroos, H. 1994. Clinical picture of hypolactasia and lactose intolerance. Scand. J. Gastroenterol. 29:36–54.

    Article  Google Scholar 

  7. Savilahti, E., Launiala, K., and Kuitunen, P. 1983. Congenital lactase deficiency. Arch. Dis. Child. 58:246–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper, B.T. 1986. Lactase deficiency and lactose malabsorption. Dig. Dis. 4:72–82.

    Article  CAS  PubMed  Google Scholar 

  9. Tamm, A. 1994. Management of lactose intolerance. Scand. J. Gastroenterol. 29:55–63.

    Article  Google Scholar 

  10. Duluc, I. Boukamel, R., Mantei, N., Semenza, G., Raul, F., and Freund, J.N. 1991. Sequence of the precursor of intestinal lactase–phlorizin hydrolase from fetal rat. Gene 103:275–276.

    Article  CAS  PubMed  Google Scholar 

  11. Vilotte, J.L. and Soulier, S. 1992. Isolation and characterization of the mouse alpha–lactalbumin–encoding gene: interspecies comparison, tissue–and stage–specific expression. Gene 119:287–292.

    Article  CAS  PubMed  Google Scholar 

  12. Naim, H.Y., Sterchi, E.E., and Lentze, M.J. 1987. Biosynthesis and maturation of lactase–phlorizin hydrolase in the human small intestinal epithelial cells. Biochem. J. 241:427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Büller, H.A., Montgomery, R.K., Sasak, W.V., and Grand, R.J. 1987. Biosynthesis, glycosylation and intracellular transport of intestinal lactase–phlorizin in rat. J. Biol. Chem. 262:17206–17211.

    PubMed  Google Scholar 

  14. Naim, H.Y., Lacey, S.W., Sambrook, J.F., and Gething, M.J. 1991. Expression of a full–length cDNA coding for human intestinal lactase–phlorizin hydrolase reveals an uncleaved, enzymatically active, and transport–competent protein. J. Biol. Chem. 266:12313–12320.

    CAS  PubMed  Google Scholar 

  15. Neele, A.M., Einerhand, A.W.C., Dekker, J., Büller, H.A., Freund, J.N., Verhave, M. et al. 1995. Verification of the rat lactase–phlorizin hydrolase site by site–directed mutagenesis. Gastroenterology 109:1234–1240.

    Article  CAS  PubMed  Google Scholar 

  16. Jost, B., Duluc, I., Richardson, M., Lathe, R., and Freund, J.N. 1997. Functional diversity and interactions between the repeat domains of rat intestinal lactase. Biochem. J. 327:95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brand, J.C. and Holt, S. 1991. Relative effectiveness of milks with reduced amounts of lactose in alleviating milk intolerance. Am. J. Clin. Nutr. 54:148–151.

    Article  CAS  PubMed  Google Scholar 

  18. Vesa, T.H., Korpela, R.A., and Sahi, T. 1996. Tolerance to small amounts of lactose in lactose maldigesters. Am. J. Clin. Nutr. 64:197–201.

    Article  CAS  PubMed  Google Scholar 

  19. Faerman, A., Barash, I., Puzis, R., Nathan, M., Hurwitz, D.R., and Shani, M. 1995. Dramatic heterogeneity of transgene expression in the lactating mammary gland of lactating mice: a model system to study the synthetic activity of mammary epithelial cells. J. Histochem. Cytochem. 4:461–470.

    Article  Google Scholar 

  20. Molenaar, A.J., Davis, S.R., and Wilkins, R.J. 1992. Expression of α–lactalbumin, αS1–casein and lactotransferrin genes is heterogeneous in sheep and cattle mammary tissue. J. Histochem. Cytochem. 40:611–618.

    CAS  Google Scholar 

  21. Sasaki, M., Eigel, W.N., and Keenan, T.W. 1978. Lactose and major milk proteins are present in secretory vesicle–rich fractions from lactating mammary gland. Proc. Natl. Acad. Sci. USA 75:5020–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stinnakre, M.G., Vilotte, J.L., Soulier, S., and Mercier, J.C. 1994. Creation and phenotypic analysis of alpha–lactalbumin–deficient mice. Proc. Natl. Acad. Sci. USA 91:6544–6548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DiTullio, P., Cheng, S.H., Marshall, J., Gregory, R.J., Ebert, K.M., Meade, H.M. et al. 1992. Production of cystic fibrosis transmembrane conductance regulator in the milk of transgenic mice. Bio/Technology 10:74–77.

    CAS  Google Scholar 

  24. Drews R., Paleyanda R.K., Lee T.K., Chang R.R., Rehemtulla A., Kaufman R.J. et al. 1995. Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc. Natl. Acad. Sci. USA 92:10462–10466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hauri, H.P., Sterchi, E.E., Bienz, D., Fransen, J.A., and Marxer, A. 1985. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 101:838–851.

    Article  CAS  PubMed  Google Scholar 

  26. Panzer, P., Preuss, U., Joberty, G., and Naim, H.Y. 1998. Protein domains implicated in intracellular transport and sorting of lactase–phlorizin hydrolase. J. Biol. Chem. 273:13861–13869.

    Article  CAS  PubMed  Google Scholar 

  27. Patton, S. and Keenan, T.W. 1975. The milk fat globule membrane. Biochim. Biophys. Acta. 415:273–309.

    Article  CAS  PubMed  Google Scholar 

  28. Drohan, W.N., Zhang, D.W., Paleyanda, R.K., Chang, R., Wroble, M., Velander, W. et al. 1994. Inefficient processing of human protein C in the mouse mammary gland. Transgenic Res. 3:355–364.

    Article  CAS  PubMed  Google Scholar 

  29. Rusconi, S., Severne, Y., Georgiev, O., Galli, I., and Wieland, S. 1990. A novel expression assay to study transcriptional activators. Gene 89:211–221.

    Article  CAS  PubMed  Google Scholar 

  30. Vilotte, J.L., Soulier, S., Paly, J., L'Huillier, P.J., Djiane, J., and Mercier, J.C. 1996. Introduction of a proximal STAT5 binding site into the murine α–lactalbumin promoter eliminates constitutive activity and leads to prolactin dependency in CHO and HC11 cells. Animal Genet. 27:A99.

    Google Scholar 

  31. Lathe, R., Vilotte, J.L., and Clark, A.J. 1987. Plasmid and bacteriophage vectors for excision of intact inserts. Gene 57:193–201.

    Article  CAS  PubMed  Google Scholar 

  32. Vilotte, J.L., Soulier, S., Stinnakre, M.G., Massoud, M., and Mercier, J.C. 1989. Efficient tissue–specific expression of bovine alpha–lactalbumin in transgenic mice. Eur. J. Biochem. 186:43–48.

    Article  CAS  PubMed  Google Scholar 

  33. Simons, J.P., McClenaghan, M., and Clark, A.J. 1987. Alteration of the quality of milk by expression of sheep beta–lactoglobulin in transgenic mice. Nature 328:530–532.

    Article  CAS  PubMed  Google Scholar 

  34. Hansen, S.A. 1975. Thin–layer chromatographic method for identification of oligosaccharides in starch hydrolyzates. J. Chromatogr. 105:388–390.

    Article  CAS  Google Scholar 

  35. Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X–114 solution. J. Biol. Chem. 256:1604–1607.

    CAS  PubMed  Google Scholar 

  36. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., and Crane, R.K. 1973. Purification of the human intestinal brush border membrane. Biochim. Biophys. Acta. 323:98–112.

    Article  CAS  PubMed  Google Scholar 

  37. Nsi–Emvo, E., Launay, J.F., and Raul, F. 1986. Improved purification of rat intestinal lactase. Gen. Physiol. Biophys. 5:53–59.

    PubMed  Google Scholar 

  38. Duluc, I., Jost, B., and Freund, J.N. 1993. Multiple levels of control of the stage– and region–specific expression of rat intestinal lactase. J. Cell Biol. 123:1577–1586.

    Article  CAS  PubMed  Google Scholar 

  39. Duluc, I., Freund, J–N., Leberquier, C., and Kedinger, M. 1994. Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development. J. Cell Biol. 126:211–221.

    Article  CAS  PubMed  Google Scholar 

  40. Lucas, A., Gibbs, J.A.H., and Baum, J.D. 1978. Creamatocrit: a simple clinical technique for estimating fat concentration and energy value of human milk. Br. Med. J. 1:1018–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodeau, J.–L. and Vilain, J.–P. 1987. Changes in membrane potential, membrane resistance, and intracellular H+, K+, Na+, and Cl activities during the progesterone–induced maturation of urodele amphibian oocytes. Dev. Biol. 120:481–493.

    Article  CAS  Google Scholar 

  42. Koldovsky, O., Asp, N.G., and Dahlqvist, A. 1969. A method for the separate assay of "neutral" and "acid" beta–galactosidase in homogenates of rat small intestinal mucosa. Anal. Biochem. 27:409–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are most grateful to M.–G. Stinnakre and to S. Soulier (CIJ, INRA) for their technical help in the generation and identification of the transgenic founder mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean–Noël Freund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, B., Vilotte, J., Duluc, I. et al. Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland. Nat Biotechnol 17, 160–164 (1999). https://doi.org/10.1038/6158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing