Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis

Abstract

We introduced a synthetic gene encoding a truncated version of the CryIA(b) protein derived from Bacillus thuringiensis into immature embryos of an elite line of maize using microprojectile bombardment. This gene was expressed using either the CaMV 35S promoter or a combination of two tissue specific promoters derived from maize. High levels of CryIA(b) protein were obtained using both promoter configurations. Hybrid maize plants resulting from crosses of transgenic elite inbred plants with commercial inbred lines were evaluated for resistance to European corn borer under field conditions. Plants expressing high levels of the insecticidal protein exhibited excellent resistance to repeated heavy infestations of this pest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lynch, R.E. 1980. European corn borer: Yield losses in relation to hybrid and stage of corn development. J. Econ. Entomol. 73: 159–164.

    Article  Google Scholar 

  2. Briggs, S.P. and Guse, C.A. 1986. Forty years of European corn borer data: What have we learned? 38th Illinois Custom Spray Operators Training Manual. Coop Ext. Service, University of Illinois, Urbana-Champaign: 169–173.

    Google Scholar 

  3. Showers, W.B., Witkowski, J.F., Mason, C.E., Calvin, D.D., Higgins, R.A. and Dively, G.P. 1989. European corn borer: Development and management, North Central Region Ext. Pub. No. 327. Published by Iowa State University, Ames, Iowa.

    Google Scholar 

  4. Hofte, H. and Whiteley, H.R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gill, S.S., Cowles, E.A. and Pietrantonio, P.V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Ann. Rev. Entomol. 37: 615–636.

    Article  CAS  Google Scholar 

  6. English, L. and Slatin, S.L. 1992. Mode of action of delta-endotoxins from Bacillus thuringiensis: a comparison with other bacterial toxins. Insect Biochem. Molec. Biol. 22: 1–7.

    Article  CAS  Google Scholar 

  7. Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beukeleer, M., Dean, C., Zabeau, M., Van Montagu, M. and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  8. Barton, K.A., Whiteley, H.R. and Yang, N.-S. 1987. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicobana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.

    Google Scholar 

  10. Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T. and Fischoff, D.A. 1990. Insect resistant cotton plants. Bio/Technology 8: 939–943.

    CAS  Google Scholar 

  11. Carozzi, N.B., Warren, G.W.N., Desai, N., Jayne, S.M., Lotstein, R.D.A., Evola, S. and Koziel, M.G. 1992. Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Molec. Biol. 20: 539–548.

    Article  CAS  Google Scholar 

  12. Murray, E.E., Lotzer, J. and Eberle, M. 1989. Codon usage in plants. Nucl. Acids Res. 17: 477–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischoff, D.A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Delannay, X., LaVallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. and Fischoff, D.A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7: 1265–1269.

    Google Scholar 

  15. Warren, G.W., Carozzi, N.B., Desai, N. and Koziel, M.G. 1992. Field evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J. Econ. Entomol. 85: 1651–1659.

    Article  CAS  Google Scholar 

  16. Geiser, M., Schweitzer, S. and Grimm, C. 1986. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: Nucleotide sequence of the kurhdl gene of subsp. kurstaki HD1 Gene 48: 109–118.

    Article  CAS  PubMed  Google Scholar 

  17. Hudspeth, R.L. and Grula, J.W. 1989. Structure and expression of the maize gene encoding the phosphoenolpyruvate carboxylase isozyme involved in C4 photosynthesis. Plant Molec. Biol. 12: 579–589.

    Article  CAS  Google Scholar 

  18. Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO J. 6: 2519–2523.

    Article  CAS  PubMed  Google Scholar 

  19. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    CAS  Google Scholar 

  20. Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O'Brien, J.V., Chambers, S.A., Adams, W.R., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P. and Lemaux, P.G. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2: 603–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Genovesi, D., Willetts, N., Zachwieja, S., Mann, M., Spencer, T., Flick, C. and Gordon-Kamm, W. 1992. Transformation of an elite maize inbred through microprojectile bombardment of regenerable embryogenic callus. In Vitro Cell. Dev. Biol. 28: 124A.

    Google Scholar 

  22. Walters, D.A., Vetsch, C.S., Potts, D.E. and Lundquist, R.C. 1992. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molec. Biol. 18: 189–200.

    Article  CAS  Google Scholar 

  23. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  PubMed  Google Scholar 

  24. Rothstein, S.J., Lahners, K.N., Lotstein, R.J., Carozzi, N.B., Jayne, S.M. and Rice, D.A. 1987. Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53: 153–161.

    Article  CAS  PubMed  Google Scholar 

  25. Duncan, D.R., Williams, M.E., Zehr, B.E. and Widholm, J.M. 1985. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332.

    Article  CAS  PubMed  Google Scholar 

  26. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  27. Kramer, C., Shillito, R.D. and DiMaio, J.J. 1992. The chlorophenol red assay— a pH indicator test to identify maize transformants containing the BAR gene. Proceedings of the 1992 Miami Bio/Technology Winter Symposium 1: 38.

    Google Scholar 

  28. Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molec. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  29. Gamborg, O.L., Miller, R.A. and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  CAS  PubMed  Google Scholar 

  30. Weymann, K., Urban, K., Ellis, D., Novitzky, R., Dunder, E., Jayne, S., Murray, D., Jen, G. and Pace, G. 1993. Isolation of transgenic progeny of maize by embryo rescue under selective conditions. In Vitro Cell. Dev. Biol. In press.

  31. Davis, F.M., Williams, W.P. and Wiseman, B.R. 1989. Methods used to screen maize for resistance to the southwestern corn borer and fall armyworm and to determine mechanisms of resistance. p. 101–108. In: Toward insect resistant maize for the third world: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects. CIMMYT.

    Google Scholar 

  32. Guthrie, W.D., Dicke, F.F. and Neiswander, C.R. 1960. Leaf and sheath feeding resistance to the European corn borer in eight inbred lines of dent corn. Ohio Agric. Exp. Stn. Res. Bull. 860: 38pp.

    Google Scholar 

  33. Clark, M.F., Lister, R.M. and Bar-Joseph, M. ELISA Techniques. Methods in Enzymol. 118: 742–766.

  34. SAS Institute. 1991. SAS/STAT User's Guide, release 6.03. SAS Institute, Cary, NC.

  35. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, second edition. Cold Spring Harbor Laboratory Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koziel, M., Beland, G., Bowman, C. et al. Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis. Nat Biotechnol 11, 194–200 (1993). https://doi.org/10.1038/nbt0293-194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0293-194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing