Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Saccharomyces Cerevisiae Strains that Overexpress Heterologous Proteins

Abstract

We describe a system that facilitates the selection of host mutants that overproduce a range of secreted and internally produced heterologous proteins in Saccharomyces cerevisiae. These mutants were initially selected for their ability to oversecrete recombinant human albumin (rHA), as detected by a direct visual assay that relies upon antibody precipitation in solid media. Yeast strains that were able to synthesize and secrete increased levels of rHA also produced elevated levels of internally expressed proteins including α1-antitrypsin Pittsburgh variant and plasminogen activator inhibitor type 2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Aharonowitz, Y. and Cohen, G. 1981. The microbiological production of pharmaceuticals. Sci. Amer. 245: 106–119.

    Article  Google Scholar 

  2. Loison, G., Videl, A., Findeli, A., Roitsch, C., Balloul, J.M. and Lemoine, Y. 1989. High level of expression of a protective antigen of schistosomes in Saccharomyces cerevisiae. Yeast 5: 497–507.

    Article  CAS  PubMed  Google Scholar 

  3. Hallewell, R.A., Mills, R., Tekamp-Olson, P., Blacker, R., Rosenberg, S., Oetting, F., Masiarz, F.R. and Scandella, C.J. 1987. Amino terminal acetylation of authentic human Cu, Zn superoxide dismutase produced in yeast. Bio/Technology 5: 363–366.

    CAS  Google Scholar 

  4. Hiramatsu, R., Aikaura, J., Horinouchi, S. and Beppu, T. 1989. Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form. J. Biol. Chem. 262: 16862–16865.

    Google Scholar 

  5. Kriskern, P.J., Hagopian, A., Montgomery, D.L., Burke, P., Dunn, N.R., Hofmann, K.J., Miller, W.J. and Ellis, R.W. 1986. Unusually high-level expression of a foreign gene (hepatitis B core antigen) in Saccharomyces cerevisiae. Gene 46: 135–141.

    Article  Google Scholar 

  6. Cousens, L.S., Shuster, J.R., Gallegos, C., Stempien, M.M., Urdea, M.S., Sanchez-Pescador, R., Taylpr, A. and Tekamp-Olson, P. 1987. High-level expression of proinsulin in the yeast Saccharomyces cerevisiae. Gene 61: 265–275.

    Article  CAS  PubMed  Google Scholar 

  7. Ecker, D.J., Stadel, J.M., Butt, T.R., March, J.A., Monia, B.P., Powers, D.A., German, J.A., Clark, P.E., Warren, F., Shatzman, A. and Crooke, S.T. 1989. Increasing gene expression in yeast by fusion to ubiquitin. J. Biol. Chem. 264: 7715–7719.

    CAS  PubMed  Google Scholar 

  8. Sabin, E.A., Lee-Hu, C.T., Shuster, J.R. and Barr, P.J. 1989. High-level expression and in vivo processing of chimeric ubiquitin fusion proteins in Saccharomyces cerevisiae. Bio/Technology 7: 705–709.

    CAS  Google Scholar 

  9. Kaisho, Y., Yoshimura, K. and Hakahama, K. 1989. Increase in gene expression by respiratory-deficient mutant. Yeast 5: 91–98.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, R.A., Duncan, M.J. and Moir, D.J. 1985. Heterologous protein secretion from yeast. Science 229: 1219–1224.

    Article  CAS  PubMed  Google Scholar 

  11. Rudolph, H.K., Antebi, A., Fink, G.R., Buckley, C.M., Dorman, T.E., Le Vitre, J., Davidson, L.S., Mao, J. and Moir, D.T. 1989. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell 58: 133–145.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai, A., Shimiza, Y. and Hishinama, F. 1988. Isolation and characterisation of mutants which show an oversecretion phenotype in Saccharomyces cerevisiae. Genetics 119: 499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki, K., Ichikawa, K. and Yoshifumi, J. 1989. Yeast mutants with enhanced ability to secrete human lysozyme: isolation and identification of a protease-deficient mutant. Mol. Gen. Genet. 219: 58–64.

    Article  CAS  PubMed  Google Scholar 

  14. Moehle, C.M., Tizard, R., Lemmon, S.K., Smart, J. and Jones, E.W. 1987. Protease B of the lysozyme-like vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisn family of serine protease. Mol. Cell. Biol. 7: 4390–4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moehle, C.M., Aynardi, M.W., Kolodny, M.R., Park, F.J. and Jones, E.W. 1987. Protease B of Saccharomyces cerevisiae: Isolation and regulation of the PRB1 structural gene. Genetics 115: 255–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moehle, C.M. and Jones, E.W. 1990. Consequences of growth media, gene copy number and regulatory mutations on the expression of the PRB1 gene of Saccharomyces cerevisiae. Genetics 124: 39–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saheki, T. and Holzer, H. 1975. Proteolytic activities in yeast. Biochem. Biophys. Acta. 384: 203–214.

    CAS  PubMed  Google Scholar 

  18. Wolf, D. and Ehmann, C. 1979. Studies on a protease B mutant of yeast. Eur. J. Biochem. 98: 375–384.

    Article  CAS  PubMed  Google Scholar 

  19. Zubenko, G. and Jones, E. 1981. Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics 97: 45–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yanish-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC9 vectors. Gene 33: 103–119.

    Article  Google Scholar 

  21. Goodey, A.R., Doel, S.M., Piggott, J.R., Watson, M.E. and Carter, B.L.A. 1987. Expression and secretion of foreign polypeptides in yeast, p. 401–429. In: Yeast Biotechnology. Berry, D.R., Russell, I. and Stewart, G.G. (Eds.). Allen Unwin, UK.

    Chapter  Google Scholar 

  22. Sleep, D., Belfield, G.P. and Goodey, A.R. 1990. The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio/Technology 8: 42–46.

    CAS  Google Scholar 

  23. Chinery, S.A. and Hinchliffe, E. 1989. A novel class of vector for yeast transformation. Curr. Genet. 16: 21–25.

    Article  CAS  PubMed  Google Scholar 

  24. Andreadis, A., Hsu, Y.-P., Hermodson, M., Kohlaw, G. and Shimmel, P. 1984. Yeast LEU2. Jour. of Biol. Chem. 259: 8059–8062.

    CAS  Google Scholar 

  25. Jones, E.W. 1977. Proteinase mutants of Saccharomyces cerevisiae. Genetics 18: 233–270.

    Article  Google Scholar 

  26. Sleep, D., Ogden, J.E., Roberts, N.A. and Goodey, A.R. 1990. Cloning and characterisation of the Saccharomyces cerevisiae glycerol-3-phosphate dehydrogenase promoter. Gene. In press.

    Google Scholar 

  27. Steven, J., Cottingham, I.R., Berry, S.J., Goodey, A.R., Courtney, M.G. and Ballance, D.J. 1990. Expression of plasminogen activator inhibitor 2 in Saccharomyces cerevisiae. Submitted.

  28. Hannahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.

    Article  Google Scholar 

  29. Mandel, M. and Higa, A. 1970. Calcium dependent bacteriophage DNA infection. J. Mol. Biol. 53: 159–162.

    Article  CAS  PubMed  Google Scholar 

  30. Beggs, J.D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275: 104–109.

    Article  CAS  PubMed  Google Scholar 

  31. Vogelstein, B. 1987. Rapid purification of DNA from agarose gels by centrifugation through a disposable plastic column. Anal. Biochem. 160: 115–118.

    Article  CAS  PubMed  Google Scholar 

  32. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linquist, S. 1981. Regulation of protein synthesis during heat shock. Nature 293: 311–314.

    Article  Google Scholar 

  34. Thomas, P.S. 1980. Hybridisation of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77: 5201–5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tourbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  Google Scholar 

  36. Owen, M.C., Brennan, S.O., Lewis, J.H. and Carrell, R.W. 1983. Mutation of antitrypsin to antithrombin α1-antitrypsin Pittsburgh (358 Met→Arg) a fatal bleeding disorder. N. Engl. J. Med. 309: 694–690.

    Article  CAS  PubMed  Google Scholar 

  37. Futcher, B. 1988. The 2μm circle plasmid of Saccharomyces cerevisiae. Yeast 4: 27–40.

    Article  CAS  PubMed  Google Scholar 

  38. Hinchliffe, E., Kenny, E. and Leaker, A. 1987. Novel products from surplus yeast via recombinant DNA technology. European Brewery Convention Symposium on Brewing Yeast, Monogr. XIII: 139–154.

    Google Scholar 

  39. Hoekema, A., Kastelein, R.A., Vasser, M. and de Boer, H. A. 1987. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: Experimental approach to study the role of biased codon usage in gene expression. Mol. and Cell Biol. 7: 2914–2924.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleep, D., Belfield, G., Ballance, D. et al. Saccharomyces Cerevisiae Strains that Overexpress Heterologous Proteins. Nat Biotechnol 9, 183–187 (1991). https://doi.org/10.1038/nbt0291-183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0291-183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing