Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring the peptides in individual organelles with mass spectrometry

Abstract

New sampling protocols combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allow the assay of single dense core vesicles. Understanding the packaging of vesicles is important as vesicles are the quanta of information for intercellular communication. Using vesicles from the exocrine atrial gland of Aplysia californica as the model, a wide range of bioactive peptides are detected within each vesicle. Although the expression of the egg-laying hormone gene family of type 1 atrial gland cells has been previously examined, chemical characterization of individual 1–2 μm diameter vesicles demonstrates that products from several genes are colocalized. The mass sensitivity of MALDI MS can be further improved to enable the analysis of even smaller subcellular organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secretory granules from the atrial gland of Aplysia.
Figure 2: Schematic diagram of the protocol used for sampling vesicles.
Figure 3: MALDI MS of individual secretory granules indicates that products from several genes (Table 1) are colocalized.

Similar content being viewed by others

References

  1. Kreiner, T., Sossin, W. & Scheller, R.H. Localization of Aplysianeurosecretory peptides to multiple populations of dense core vesicles. J. Cell Biol. 102, 769–782 (1986).

    Article  CAS  Google Scholar 

  2. Mahon, A.C. et al. Structure and expression of the egg-laying hormone gene family in Aplysia. J. Neurosci. 5, 1872–1880 (1985).

    Article  CAS  Google Scholar 

  3. Kurosky, A. et al. Expression and genetic variation of the Aplysia egg-laying hormone gene family in the atrial gland. Invertebrate Neurosci. 2, 261–271 (1997).

    Article  CAS  Google Scholar 

  4. Rothman, B.S. et al. Isolation and primary structure of the califins, three biologically active egg-laying hormone-like peptides from the atrial gland of Aplysia californica. J. Biol. Chem. 261, 1616–1623 (1986).

    CAS  PubMed  Google Scholar 

  5. Nagle, G.T., Painter, S.D., Blankenship, J.E., Dixon, J.D. & Kurosky, A. Evidence for the expression of three genes encoding homologous atrial gland peptides that cause egg laying in Aplysia. J. Biol. Chem. 261, 7853–7859 (1986).

    CAS  PubMed  Google Scholar 

  6. Nagle, G.T., Painter, S.D., Blankenship, J.E. & Kurosky, A. Proteolytic processing of egg-laying hormone-related precursors in Aplysia. Identification of peptide regions critical for biological activity. J. Biol. Chem. 263, 9223–9237 (1988).

    CAS  PubMed  Google Scholar 

  7. Nagle, G.T., van Heumen, W.R.A., El-Hamzawy, M.A. & Kurosky, A. Purification and characterization of Aplysia atrial gland secretory granules containing egg-laying prohormone-related peptides. Peptides 15, 101–108 (1994).

    Article  CAS  Google Scholar 

  8. van Heumen, W.R.A., Nagle, G.T. & Kurosky, A. Ultrastructural localization of egg-laying prohormone-related peptides in the atrial gland of Aplysia californica. Cell Tiss. Res. 279, 13–24 (1995).

    Article  CAS  Google Scholar 

  9. Chiu, D.T. et al. Probing single secretory vesicles with capillary electrophoresis. Science 279, 1190–1193 (1998).

    Article  CAS  Google Scholar 

  10. Lillard, S.J. et al. Separation and characterization of amines from individual atrial gland vesicles of Aplysia californica. Anal. Chem. 70, 3517–3524 (1998).

    Article  CAS  Google Scholar 

  11. Dreisewerd, K., Kingston, R., Geraerts, W.P.M. & Li, K.W. Direct mass spectrometric peptide profiling and sequencing of nervous tissues to identify peptide involved in male copulatory behavior in Lymnaea stagnalis. Int. J. Mass Spectrom. Ion Processes 169, 291–299 (1997).

    Article  Google Scholar 

  12. Li, L. et al. Mass spectrometric survey of interganglionically transported peptides in Aplysia. Peptides 19, 1425–1433 (1998).

    Article  CAS  Google Scholar 

  13. Redeker, V. Toullec, J. -Y., Vinh, J., Rossier, J. & Soyez, D. Combination of peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunodetection on single glands or cells. Anal. Chem. 70, 1805–1811 (1998).

    Article  CAS  Google Scholar 

  14. Jiménez, C.R. et al. Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons. J. Neurochem. 62, 404–407 (1994).

    Article  Google Scholar 

  15. Garden, R.W., Moroz, L.L., Moroz, T.P., Shippy, S.A. & Sweedler, J.V. Excess salt removal with matrix rinsing: direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 31, 1126–1130 (1996).

    Article  CAS  Google Scholar 

  16. Li, L., Golding, R.E. & Whittal, R.M. Analysis of single mammalian cell lysates by mass spectrometry. J. Am. Chem. Soc. 118, 11662–11663 (1996).

    Article  CAS  Google Scholar 

  17. van Strien, F.J.C., Jesperson, S., van der Greef, J., Jenks, B.G. & Roubos, E.W. Identification of POMC processing products in single melanotrope cells by matrix-assisted laser desorption/ionization mass spectrometry. FEBS Lett. 379, 165–170 (1996).

    Article  CAS  Google Scholar 

  18. Worster, B.M., Yeoman, M.S. & Benjamin, P.R. Matrix-assisted laser desorption/ionization time of flight mass spectrometric analysis of the pattern of peptide expression in single neurons resulting from alternative mRNA splicing of the FMRFamide gene. Eur. J. Neurosci. 10, 3489–3507 (1998).

    Article  Google Scholar 

  19. Chiu, D.T. & Zare, R.N. Assaying for peptides in individual Aplysia neurons with mass spectrometry. Proc. Natl. Acad. Sci. USA 95, 3338–3340 (1998).

    Article  CAS  Google Scholar 

  20. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    Article  CAS  Google Scholar 

  21. Jespersen, S., Chaurand, P., van Strien, F.J.C., Spengler, B. & van der Greef, J. Direct sequencing of neuropeptides in biological tissue by MALDI-PSD mass spectrometry. Anal. Chem. 71, 660–666 (1999).

    Article  CAS  Google Scholar 

  22. Li, L. Garden, R.W., Romanova E.V., Sweedler, J.V. In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. Anal. Chem. 71, 5451–5458 (1999).

    Article  CAS  Google Scholar 

  23. Moore, S.K., Kauer, F.W., Begnoche, V.L. & Mayeri, E. A novel neuroactive peptide from the atrial gland of Aplysia. Soc. Neurosci. Abs. 22, 696 (1996).

    Google Scholar 

  24. Jespersen, S. et al. Attomole detection of proteins by matrix-assisted laser desorption/ionization mass spectrometry with the use of picoliter vials. Rapid Commun. Mass Spectrom. 8, 581–584 (1994).

    Article  CAS  Google Scholar 

  25. Solouki, T., Marto, J.A., White, F.M., Guan, S. & Marshall, A.G. Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance. Anal. Chem. 67, 4139–4144 (1995).

    Article  CAS  Google Scholar 

  26. Allmaier, G. Picoliter to nanoliter deposition of peptide and protein solutions for matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1567–1569 (1997).

    Article  CAS  Google Scholar 

  27. Önnerfjord, P., Nilsson, J., Wallman, L., Laurell, T. & Marko-Varga, G. Picoliter sample preparation in MALDI-TOF MS using a micromachined silicon flow-through dispenser. Anal. Chem. 70, 4755–4760 (1998).

    Article  Google Scholar 

  28. Zhang, H.Y., Andren, P.E. & Caprioli, R.M. Micro-preparation procedure for high-sensitivity matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 30, 1768–1771 (1995).

    Article  CAS  Google Scholar 

  29. Toomre, D., Keller, P., White, J., Olivo, J. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  Google Scholar 

  30. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  Google Scholar 

  31. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).

    Article  CAS  Google Scholar 

  32. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4560 (1997).

    Article  CAS  Google Scholar 

  33. Garden, R.W. & Sweedler, J.V. Heterogeneity within MALDI samples as revealed by mass spectrometric imaging, Anal. Chem. 71, 30–36 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gregg Nagle and Sherry Painter for insightful comments about atrial gland peptides, and we thank Christian Reilly for assistance with animal collection. This work is supported by the National Institutes of Health, the National Science Foundation, and the Dreyfus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Sweedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubakhin, S., Garden, R., Fuller, R. et al. Measuring the peptides in individual organelles with mass spectrometry. Nat Biotechnol 18, 172–175 (2000). https://doi.org/10.1038/72622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing