Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A synthetic peptide adhesion epitope as a novel antimicrobial agent

Abstract

The earliest step in microbial infection is adherence by specific microbial adhesins to the mucosa of the oro-intestinal, nasorespiratory, or genitourinary tract. We inhibited binding of a cell surface adhesin of Streptococcus mutans to salivary receptors in vitro, as measured by surface plasmon resonance, using a synthetic peptide (p1025) corresponding to residues 1025–1044 of the adhesin. Two residues within p1025 that contribute to binding (Q1025, E1037) were identified by site-directed mutagenesis. In an in vivo human streptococcal adhesion model, direct application of p1025 to the teeth prevented recolonization of S. mutans but not Actinomyces , as compared with a control peptide or saline. This novel antimicrobial strategy, applying competitive peptide inhibitors of adhesion, may be used against other microorganisms in which adhesins mediate colonization of mucosal surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptide-mediated inhibition of SA I/II binding to salivary agglutinin.
Figure 2: Effect of alanine substitutions on p1025-mediated inhibition of SA I/II binding to salivary agglutinin.
Figure 3: Binding kinetics of wild-type and mutagenized C-terminal fragments of SA I/II to salivary agglutinin.
Figure 4: Recolonization of S. mutans in the oral cavity in (A) dental plaque, (B) saliva, and (C) Actinomyces in dental plaque.
Figure 5: Persistence of p1025 in vivo.

Similar content being viewed by others

References

  1. Loesche, W.J., Rowan, J., Straffon, L.H., and Loos, P.J. 1975. Association of Streptococcus mutans with human dental decay. Infect. Immun. 11: 1252– 1260.

    Google Scholar 

  2. Russell, M.W. and Lehner, T. 1978. Characterisation of antigens extracted from cells and culture fluids of Streptococcus mutans serotype c. Arch. Oral Biol. 23: 7– 15.

    Article  Google Scholar 

  3. Russell, R.R.B. 1979. Wall–associated protein antigens of Streptococcus mutans. J. Gen. Microbiol. 114: 109–115.

    Article  Google Scholar 

  4. Lehner, T., Russell, M.W., and Caldwell, J. 1980. Immunisation with a purified protein from Streptococcus mutans against dental caries in rhesus monkeys. Lancet. i: 995–996.

    Article  Google Scholar 

  5. Lehner, T., Challacombe, S.J., and Caldwell, J. 1975. Immunological and bacteriological basis for vaccination against dental caries in rhesus monkeys. Nature 254: 517–520.

    Article  Google Scholar 

  6. Ericson, T. and Rundegren, J. 1983. Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans. Eur. J. Biochem. 133: 255– 261.

    Article  Google Scholar 

  7. Russell, M.W., and Mansson–Rahemtulla, B. 1989 . Interaction between surface protein antigens of Streptococcus mutans and human salivary components. Oral Microbiol. Immunol . 4: 106–111.

    Article  Google Scholar 

  8. Crowley, P.J., Brady, L.J., Piacentini, D.A., and Bleiweis, A.S. 1993. Identification of a salivary agglutinin–binding domain within cell surface adhesin P1 of Streptococcus mutans. Infect. Immun. 61: 1547–1552.

    Google Scholar 

  9. Munro, G.H., Evans, P., Todryk, S., Buckett, P., Kelly, C.G., and Lehner, T. 1993. A protein fragment of streptococcal cell surface antigen I/II which prevents adhesion of Streptococcus mutans. Infect. Immun. 61: 4590–4598.

    Google Scholar 

  10. Kelly, C.G., Todryk, S., Kendal, H.L., Munro, G.H., and Lehner, T. 1995. T cell, adhesion and B cell epitopes of the cell surface Streptococcus mutans protein antigen I/II. Infect. Immun. 63: 3649– 3638.

    PubMed Central  Google Scholar 

  11. Ma, J–K.C., Hunjan, M., Smith, R., and Lehner, T. 1989. Specificity of monoclonal antibodies in local passive immunization against Streptococcus mutans. Clin. Exper. Immunol. 77: 331–337.

    Google Scholar 

  12. Boman, H.G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61– 92.

    Article  Google Scholar 

  13. Homonylo–McGavin, M.K., and Lee, S.F. 1996. Role of the C terminus in antigen P1 surface localization in Streptococcus mutans and two related cocci. J. Bacteriol . 178: 801–807.

    Article  Google Scholar 

  14. Lehner, T., Caldwell, J., and Smith, R. 1987. Local passive immunization by monoclonal antibodies against streptococcal antigen I/II in the prevention of dental caries. Infect. Immun. 50: 1274 –1278.

    Google Scholar 

  15. Wüthrich, K. 1986. NMR of Proteins and Nucleic Acids. John Wiley & Sons Inc, New York.

    Book  Google Scholar 

  16. Wishart, D.S., Sykes, B.D., and Richards, F.M. 1992. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 31: 1647–1651.

    Article  Google Scholar 

  17. Merutka, G., Dyson, H.J., and Wright, P.E. 1995. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J. Biomol. NMR. 5: 14–24.

    Article  Google Scholar 

  18. Munoz, V. and Serrano, L. 1995. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J. Mol. Biol. 245: 275– 296.

    Article  Google Scholar 

  19. Munoz, V. and Serrano, L. 1995. Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J. Mol. Biol. 245: 297 –308.

    Article  Google Scholar 

  20. Dyson, H.J., Sayre, J.R., Merutka, G., Shin, H.C., Lerner, R.A., and Wright, P.E. 1992 . Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J. Mol. Biol. 226: 819–835.

    Article  Google Scholar 

  21. Oho, T., Yu, H., Yamashita, Y., and Koga T. 1998. Binding of salivary glycoprotein–secretory immunoglobulin A complex to the surface protein antigen of Streptococcus mutans. Infect. Immun. 66: 115–121.

    Google Scholar 

  22. Jenkinson, H.F. and Demuth, D.R. 1997 . Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 23: 183 –190.

    Article  Google Scholar 

  23. Demuth, D.R., Golub, E.E., and Malamud, D. 1990. Streptococcal–host interactions. Structural and functional analysis of a streptococcus sanguis receptor for a human salivary glycoprotein. J. Biol. Chem. 265: 7120–7126.

    Google Scholar 

  24. Quiocho, F.A. 1986. Carbohydrate–binding proteins: tertiary structures and protein–sugar interactions. Annu. Rev. Biochem. 55: 287–315.

    Article  Google Scholar 

  25. Campbell, A.C., Wong, W.Y., Houston, M. Jr., Schweizer, F., Cachia, P.J., Irvin, R.T. et al. 1997. Interaction of the receptor binding domains of Pseudomonas aeruginosa pili strains PAK, PAO, KB7 and P1 to a cross–reactive antibody and receptor analog: implications for synthetic vaccine design. J. Mol. Biol. 267: 382– 402.

    Article  Google Scholar 

  26. Emsley, P., Charles, I.G., Fairweather, N.F., and Isaacs, N.W. 1996. Structure of Bordetella pertussis virulence factor P69 pertactin. Nature 381: 90– 92.

    Article  Google Scholar 

  27. Zopf, D. and Roth, S. 1996. Oligosaccharide anti–infective agents. Lancet 347: 1017–1021.

    Article  Google Scholar 

  28. Idanpaan–Heikkila, I., Simon, P.M., Zopf, D., Vullo, T., Cahill, P., Sokol, K. et al. 1997. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J. Infect. Dis. 176: 704–712.

    Article  Google Scholar 

  29. Lee, K.K., Wong, W.Y., Sheth, H.B., Hodges, R.S., Paranchych, W., and Irvin, R.T. 1995. Use of synthetic peptides in characterization of microbial adhesins. Methods Enzymol. 253: 115–131.

    Article  Google Scholar 

  30. Relman, D., Tuomanen, E., Falkow, S., Golenbock, D.T., Saukkonen, K., and Wright, S.D. 1990. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (M2, CD11b/CD18) [Please Confirm] binds filamentous hemagglutinin of Bordetella pertussis. Cell 61: 1375–1382.

    Article  Google Scholar 

  31. Putney, S.D. and Burke, P.A. 1998. Improving protein therapeutics with sustained–release formulations. Nat. Biotechnol. 16: 153–157.

    Article  Google Scholar 

  32. Sloan–Lancaster, J. and Allen, P.M. 1996 . Altered peptide ligand–induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev. Immunol. 14: 1–27.

    Article  Google Scholar 

  33. Lee, S.F., Progulske–Fox, A., Erdos, G.W., Piacentini, D.A., Ayakawa, G.Y., Crowley, P.J. et al. 1989. Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect. Immun. 57: 3306–3313.

    Google Scholar 

  34. Beighton, D., Russell, R.R.B., and Whiley, R.A. 1991. A simple biochemical scheme for the differentiation of Streptococcus mutans and streptococcus sobrinus . Caries Res. 25: 174–178 .

    Article  Google Scholar 

  35. Zylber, L.J. and Jordan, H.V. 1982. Development of a selective medium for detection and enumeration of Actinomyces viscosus and Actinomyces naeslundii in dental plaque. J. Clin. Microbiol. 15: 253–259.

    PubMed Central  Google Scholar 

  36. Davis, D.G. and Bax, A. 1985. Assignment of complex 1H–NMR spectra via two–dimensional homonuclear Hartmann–Hahn spectroscopy. J. Am. Chem. Soc. 107: 2820–2821.

    Article  Google Scholar 

  37. Jeener, J., Meier. B.H., Bavchmann, P., and Ernst, R.R. 1979. Investigation of exchange processes by two dimensional NMR spectroscopy. J. Chem. Phys. 71: 4546– 4553.

    Article  Google Scholar 

  38. Rance, M., Sorensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R., and Wuthrich, K. 1983. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117: 479– 485.

    Article  Google Scholar 

  39. Piotto, M., Saudek, V., and Sklenar, V. 1992. Gradient–tailored excitation for single–quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 2: 661–665.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust grant 040412 and the Special Funds of Guy's Hospital Dental School. NMR spectroscopic studies were supported by the TMR program "Access to Large-Scale Facilities" of the EC (ERBFMGECT950032). The BIAcore facility was established with funds from the Special Trustees of Guy's Hospital and the Special Trustees for St. Thomas' Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, C., Younson, J., Hikmat, B. et al. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nat Biotechnol 17, 42–47 (1999). https://doi.org/10.1038/5213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing