Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Analyses of Bioreactor Performance by Nuclear Magnetic Resonance Spectroscopy

Abstract

There are many commercially and scientifically relevant products that must be produced in mammalian cell systems. Growth and maintenance systems (bioreactors) for mammalian cells are not well characterized, however, since these cells are more fastidious and sensitive than are microorganisms. Optimization of mammalian cell bioreactors can be facilitated by nondestructive monitoring of cellular physiology and metabolism in situ. Nuclear Magnetic Resonance (NMR) spectroscopy is ideal for this application. NMR can monitor a variety of parameters of intra and extracellular metabolites that contain nuclei with net magnetic moments. Such analyses can be used to determine energization, levels of 31P and 1Hcontaining metabolites, selected enzyme kinetics, compartmentalized ion activities, metabolic fates of 3H, 2H, 13C, 15N or 19Flabeled tracers, O2 tension, compartmentalized redox potential, membrane potential, cell number and cell volume. These can all be monitored with reasonable time resolution with minimum perturbation of the sample.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glacken, M.W., Fleishaker, R.J. and Sinskey, A.J. 1983. Mammalian cell culture: Engineering principles and scale-up. Trends Biotechnol. 1:102–108.

    Article  CAS  Google Scholar 

  2. Pollard, T. 1972. Readings in Mammalian Cell Culture, Cold Spring Harbor Press, New York.

    Google Scholar 

  3. Handa-Corrigan, A. 1988. Large-scale in vitro hybridoma culture: Current status. Bio/Technology 6:784–786.

    Google Scholar 

  4. Feder, J. and Tolbert, W.R. 1983. The large-scale cultivation of mammalian cells. Scientific American 248:36–48.

    Article  CAS  Google Scholar 

  5. Adema, E. and Sinskey, A.J. 1987. Mammalian cell culture in hollow fiber reactors: Intracapillary vs extracapillary growth. Biotechnol. Prog. 3:74–79.

    Article  Google Scholar 

  6. Chresand, T.J., Gillies, R.J., and Dale, B.E. 1988. Optimum fiber spacing in a hollow fiber bioreactor. Biotechnol. Bioengr. In press.

  7. Webster, I.A., Shuler, M.L., and Rony, P.R. 1979. Whole-cell hollow fiber reactors: Effectiveness factors. Biotechnol. Bioengr. 21:1725–1748.

    Article  CAS  Google Scholar 

  8. Webster, I.A. and Shuler, M.L. 1981. Whole-cell hollow fiber reactors Transient substrate concentration profiles. Biotechnol. Bioeng.. 23:447–450.

    Article  CAS  Google Scholar 

  9. Glacken, M.W., Fleishaker, R.J., and Sinskey, A.J. 1986. Reduction of waste product excretion via nutrient control Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28:1376–1389.

    Article  CAS  Google Scholar 

  10. Blute, T., Gillies, R.J., and Dale, B.E. 1988. Cell density measurements in hollow fiber bioreactors. Biotechnol. Prog. In press.

  11. Gillies, R.J., Dale, B.E., Drury, D.D. and Chresand, T.J. 1986. Design and application of bioreactors for NMR of mammalian cells. Rev. Magn. Reson. Med. 1:155–179.

    Google Scholar 

  12. DeFronzo, M. and Gillies, R.J. 1987. Characterization of methyl phosphonate as a P-31 NMR pH indicator. J. Biol Chem. 262:11032–11037.

    CAS  PubMed  Google Scholar 

  13. Labotka, R.J. and Kleps, R.A. 1983. A phosphate analog probe of red cell pH using phosphorous-31 NMR. Biochemistry 22:6089–6092.

    Article  CAS  Google Scholar 

  14. Tofts, P.S. and Wray, S. 1988. A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR in Biomed. 1:1–10.

    Article  CAS  Google Scholar 

  15. Gillies, R.J., Alger, J.R., den Hollander, J.A., and Shulman, R.G. 1982. Intracellular pH measured by NMR Methods and results, p. 79–104. In Intracellular pH. R. Nuccitelli and D. W. Deamer (Eds) Alan R. Liss, NY.

    Google Scholar 

  16. Gupta, R.K. and Gupta, P. 1987. 31P NMR measurement of intracellular free magnesium in cells and organisms, p. 33–42. In NMR Spectroscopy of Cells and Organisms 2 CRC Press, Boca Raton, Fla.

    Google Scholar 

  17. Gadian, D. 1982. NMR And Living Systems. Oxford Univ Press.

  18. Thoma, W.J. and Ugurbil, K. 1987. Saturation-transfer studies of ATP inorganic phosphate exchange in isolated perfused rat liver. Biochim. Biophys. Acta 893:225–231.

    Article  CAS  Google Scholar 

  19. Neeman, M., Rushkin, E., Kaye, A.M., and Degam, H. 31P NMR studies of phosphate transfer rates in T47D human breast cancer cells. 1988. Biochim. Biophys. Acta 930:179–192.

    Article  Google Scholar 

  20. Lyon, R.C., Cohen, J.S., Faustino, P.J., Megnin, F. and Myers, C.E. 1988. Glucose metabolism in drug-sensitive and drug resistant human breast cancer cells monitored by magnetic resonance spectroscopy. Cancer Res. 48:870–877.

    CAS  PubMed  Google Scholar 

  21. Baxter, R.L., MacKenzie, N.E. and Scott, A.I. 1983. 13C NMR as a probe for metabolic pathways in vivo. Biol. Magn. Reson. 5:1–20.

    CAS  Google Scholar 

  22. MacKenzie, N.E., Johnson, J., Burton, G., Wagner, G.G., and Scott, A.I. 1984. Carbon 13 NMR studies of glycolysis in intra- and extra erythrocytic Babesia microti. Mol. Biochem. Parasitol. 13:13–20.

    Article  CAS  Google Scholar 

  23. MacKenzie, N.E., Baxter, R.L., Scott, A.I., and Fagerness, P.E. 1982. Uniformly carbon-13 enriched substrates as NMR probes for metabolic events in vivo. Application of double quantum coherence to a biological problem. J. Chem. Soc. Chem. Commun. 1982:145–147.

    Article  Google Scholar 

  24. Jue, T., Cheung, Y., and Shulman, R.G. 1988. Measuring the redox potential in perfused liver with proton NMR. J. Magn. Reson. 76:178–182.

    CAS  Google Scholar 

  25. Jue, T. 1988. A Strategy to sift for 12C-1H and 13C-1H relaxation rates in the in vivo proton NMR spectra. J. Magn. Reson. 73:321–324.

    Google Scholar 

  26. Sillerud, L.O., Alger, J.R., and Shulman, R.G. 1981. High resolution proton NMR studies of Intracellular metabolites in yeast using 13C decoupling. J. Magn. Reson. 45:142–148.

    CAS  Google Scholar 

  27. Metcalfe, J.C., Hesketh, T.R. and Smith, G.A. 1985. Free cytosohc Ca2+ measurements with fluorine labeled indicators using 19F NMR. Cell Calcium 6:183–192.

    Article  CAS  Google Scholar 

  28. Gupta, R.K. and Gillies, R.J. 1987. 19F NMR measurement of Intracellular free calcium ions in intact cells NMR Spectroscopy of Cells and Organisms. 2:46–64.

  29. Deutsch, C. and Taylor, J. 1987. 19F NMR measurements of intracellular pH. NMR Spectroscopy of Cells and Organisms. 2:55–74.

  30. Hull, W.E., Kunz, W., Port, R.E. and Seiler, N. 1988. Chain fluorinated polyammes as tumor markers III. Determination of geminal difluoropolyamines and their precursor 2,2,-difluoroputrescine in normal tissues and experimental tumours by in vitro and in vivo19F NMR spectroscopy. NMR in Biomed. 1:11–19.

    Article  CAS  Google Scholar 

  31. Parhami, P. and Fung, B.M. 1983. 19F relaxation study of perfluoro chemicals as oxygen carriers. J. Phys. Chem 87:1928–1931.

    Article  CAS  Google Scholar 

  32. Taylor, R.J. and Deutsch, C. 1987. Simultaneous measurement by NMR of O2 tension and pH in cell suspensions. Biophys. J. 51:77a.

    Google Scholar 

  33. Gupta, R.K. 1987. 23Na NMR spectroscopy of intact cells and tissues. NMR Spectroscopy of Cells and Organisms. 2:1–32.

  34. Fossel, E.T. and Hoefeler, H. 1986. Observation of Intracellular potassium and sodium in the heart by NMR: A Major fraction of potassium is “invisible”. Magn. Reson. Med. 3:534–540.

    Article  CAS  Google Scholar 

  35. Okerlund, L.S. and Gillies, R.J. 1988. Measurement of pH and sodium by NMR In Na+/H+ exchange. CRC Press, Boca Raton, FL.

  36. Jans, A.W.H., Willem, R., Kellenbach, E.R. and Kinne, R.K.H. 1988. Sodium influxes in renal epithelial LLC-PK1/Cl4 cells monitored by 23Na NMR. Mag. Reson. Med. 7:292–299.

    Article  CAS  Google Scholar 

  37. MacKenzie, N.E. and Gooley, P.R. 1988. Applications of NMR spectroscopy to biological systems. Medicinal. Res. Rev. 8:57–76.

    Article  CAS  Google Scholar 

  38. Both Microgon (Laguna Hills, CA—ph ♯ 800.654.0111) and SETEC (Livermore, CA—ph ♯ 415.449.1727) are in the process of developing NMR-compatible hollow fiber bioreactors for commercial use.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillies, R., MacKenzie, N. & Dale, B. Analyses of Bioreactor Performance by Nuclear Magnetic Resonance Spectroscopy. Nat Biotechnol 7, 50–54 (1989). https://doi.org/10.1038/nbt0189-50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0189-50

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing