Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous release of endostatin from microencapsulated engineered cells for tumor therapy

Abstract

Research studies suggest that tumor-related angiogenesis contributes to the phenotype of malignant gliomas. We assessed the effect of local delivery of the angiogenesis inhibitor endostatin on human glioma cell line (U-87MG) xenografts. Baby hamster kidney (BHK) cells were stably transfected with a human endostatin (hES) expression vector and were encapsulated in alginate-poly L-lysine (PLL) microcapsules for long-term delivery of hES. The release of biologically active endostatin was confirmed using assays of bovine capillary endothelial (BCE) proliferation and of tube formation. Human endostatin released from the microcapsules brought about a 67.2% inhibition of BCE proliferation. Furthermore, secreted hES was able to inhibit tube formation in KDR/PAE cells (porcine aortic endothelial cells stably transfected with KDR, a tyrosine kinase) treated with conditioned U-87MG medium. A single local injection of encapsulated endostatin-secreting cells in a nude mouse model resulted in a 72.3% reduction in subcutaneous U87 xenografts' weight 21 days post treatment. This inhibition was achieved by only 150.8 ng/ml human endostatin secreted from 2 × 105 encapsulated cells. Encapsulated endostatin-secreting cells are effective for the treatment of human glioblastoma xenografts. Continuous local delivery of endostatin may offer an effective therapeutic approach to the treatment of a variety of tumor types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endostatin encapsulation.
Figure 2: The biological activity of endostatin on endothelial cells.
Figure 3: The effect of encapsulated BHK-endo on tumor growth in vivo.
Figure 4: Western blot analysis of recombinant endostatin.
Figure 5: Immunochemistry of tumors treated with BHK-neo or BHK-endo encapsulated cells.

Similar content being viewed by others

References

  1. Black, P.M. Brain tumor. Part 2. N. Engl. J. Med. 324, 1555–1564 (1991).

    Article  CAS  Google Scholar 

  2. Leon, S.P., Folkerth, R.D. & Black, P.M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77, 362–372 (1996).

    Article  CAS  Google Scholar 

  3. Folkman, J. Angiogenesis inhibitors generated by tumors. Mol. Med. 1, 120–122 (1995).

    Article  CAS  Google Scholar 

  4. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 ( 1996).

    Article  CAS  Google Scholar 

  5. Kerbel, R.S. A cancer therapy resistant to resistance. Nature 390 , 335–336 (1997).

    Article  CAS  Google Scholar 

  6. Hanahan, D. A flanking attack on cancer. Nat. Med. 4, 13–14 (1998).

    Article  CAS  Google Scholar 

  7. Brem, S., Brem, H., Folkman, J., Finkelstein, D. & Patz, A. Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res. 36, 2807–2812 (1976).

    CAS  PubMed  Google Scholar 

  8. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 ( 1995).

    Article  CAS  Google Scholar 

  9. Tanaka, T., Manome, Y., Wen, P., Kufe, D.W. & Fine, H.A. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat. Med. 3, 437–442 ( 1997).

    Article  CAS  Google Scholar 

  10. Takamiya, Y., Brem, H., Ojeifo, J., Mineta, T. & Martuza, R.L. AGM-1470 inhibits the growth of human glioblastoma cells in vitro and in vivo. Neurosurgery 34, 869–875 (1994).

    CAS  PubMed  Google Scholar 

  11. Takamiya, Y., Friedlander, R.M., Brem, H., Malick, A. & Martuza, R.L. Inhibition of angiogenesis and growth of human nerve-sheath tumors by AGM-1470. J. Neurosurg. 78, 470–476 ( 1993).

    Article  CAS  Google Scholar 

  12. Lee, J.K., Choi, B., Sobel, R.A., Chiocca, E.A. & Martuza, R.L. Inhibition of growth and angiogenesis of human neurofibrosarcoma by heparin and hydrocortisone. J Neurosurg. 73, 429–435 ( 1990).

    Article  CAS  Google Scholar 

  13. Tamargo, R.J., Leong, K.W. & Brem, H. Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neurooncol. 9, 131–138 ( 1990).

    Article  CAS  Google Scholar 

  14. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  Google Scholar 

  15. Kirsch, M. et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res. 58, 4654–4659 (1998).

    CAS  PubMed  Google Scholar 

  16. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  Google Scholar 

  17. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908– 910 (1980).

    Article  CAS  Google Scholar 

  18. Soon-Shiong, P. et al. Insulin independence in a type 1 diabetic patient after encapsulated islets transplantation. Lancet 143, 950– 955 (1994).

    Article  Google Scholar 

  19. Lanza, R.P., Hayes, J.L. & Chick, W.L. Encapsulated cell technology. Nat. Biotechnol. 14, 1107–1111 ( 1996).

    Article  CAS  Google Scholar 

  20. Ismail, N., Hortelano, G. & Al-Hendy, A. Growth hormone gene therapy using Encapsulated myoblast . In Cell encapsulation technology and therapeutics. (eds Kuhetreiber, W.M., Lanza, R.P. & Chick, W.L.) 343– 350 (Birkhauser, Boston, MA; 1999).

    Chapter  Google Scholar 

  21. Machluf, M., Orsola, A. & Atala, A. Controlled release of therapeutic agents: slow delivery and cell encapsulation. World J. Urol. 18, 80–83 (2000).

    Article  CAS  Google Scholar 

  22. Savelkoul, H.F.J. et al. Modulation of systemic cytokine levels by implantation of alginate-encapsulated cells. J. Immunol. Methods 170 , 185–196 (1994).

    Article  CAS  Google Scholar 

  23. Machluf, M., Regev, O., Peled, Y., Kost, J. & Cohen, S. Characterization of microencapsulated liposome systems for the controlled delivery of liposome-associated macromolecules. J. Contr. Release 43, 35–45 (1996).

    Article  Google Scholar 

  24. Prakash, S. & Chang, T.M.S. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2, 883–887 (1996).

    Article  CAS  Google Scholar 

  25. Gasper, L.E. et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int. J. Radiat. Oncol. Biol. Phys. 24, 55–57 (1992).

    Article  Google Scholar 

  26. Liang, B.C., Thornton, A.F. Jr., Sandler, H.M. & Greenberg, H.S. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J. Neurosurg. 75, 559–563 (1991).

    Article  CAS  Google Scholar 

  27. Sneed, P.K. et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int. J. Radiat. Oncol. Biol. Phys. 29, 719–727 ( 1994).

    Article  CAS  Google Scholar 

  28. O'Reilly, M.S., Holmgren, L., Chen, C. & Folkman, J. Angiostatin induces and sustains dormancy of human primary tumors in mice . Nat. Med. 2, 689–692 (1996).

    Article  CAS  Google Scholar 

  29. Boehm, T., Folkman, J., Browder, T. & O'Reilly, M.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404– 407 (1997).

    Article  CAS  Google Scholar 

  30. Fenstermacher, J.D., Blasberg, R.G. & Patlak, C.S. Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol. Ther. 14, 217–248 (1981).

    Article  CAS  Google Scholar 

  31. Jain, R.K. Haemodynamic and transport barriers to the treatment of solid tumours. Int. J. Radiat. Biol. 60, 85–100 (1991).

    Article  CAS  Google Scholar 

  32. Yamaguchi, N. et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18, 4414–4423 (1999).

    Article  CAS  Google Scholar 

  33. Blezinger, P. et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat. Biotechnol. 17, 343–348 ( 1999).

    Article  CAS  Google Scholar 

  34. Chartier, C., Degryse, M., Dieterle, A., Pavirani, A. & Mehtali, M. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 113, 178–183 ( 1991).

    Google Scholar 

  35. Deroanne, C.F., Hajitou, A., Calberg-Bacq, C.M., Nusgens, B.V. & Lapiere, C.M. Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer Res. 57, 5590–5597 (1997).

    CAS  PubMed  Google Scholar 

  36. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988 –26995 (1994).

    CAS  PubMed  Google Scholar 

  37. Carroll, R.S. et al. KDR activation in astrocytic neoplasms. Cancer. 7, 1335–1341 ( 1999).

    Article  Google Scholar 

  38. Weidner, N., Semple, J.P., Welch, W.R. & Folkman, J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma . N. Engl. J. Med. 324, 1– 8 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Judah Folkman for his helpful suggestions in the preparation of the manuscript. This work is supported by a grant from the Boston Neurosurgical Foundation. T.J. is a recipient of a fellowship from Jikei University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rona S. Carroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joki, T., Machluf, M., Atala, A. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 19, 35–39 (2001). https://doi.org/10.1038/83481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing