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to quantify how the features of a design were 
linked to the observed measurements.

What did this enormous endeavor reveal? 
First, although codon choice has long been 
considered crucial for optimizing protein syn-
thesis in E. coli, Cambray et al.1 found that 
RNA secondary structure near the start codon 
is the design factor that has by far the largest 
effect on translational efficiency, thus under-
lining the importance of translation initiation. 
Other features, such as nucleotide, codon, and 
amino acid composition, have only a minor 
influence compared with RNA secondary 
structure. Codon choice—as measured by 
the codon adaptation index9—has a more 
pronounced effect on translation only when 
the translation initiation rate of all constructs 
is increased, thus offering some comfort for 
companies that tout codon-optimization 
tools.

The analysis identified six archetypal sce-
narios for translational efficiency, depend-
ing on the gene sequence. These scenarios 
include trade-offs between secondary struc-
tures affecting the initiation rate and codon 
usage influencing elongation, with an ideal 
balance occurring when ribosomes load onto 
a transcript as quickly as they progress along 
the mRNA during translation. In contrast, the 
worst-translated constructs encode multiple 
strong and noncompeting RNA structures 
that block ribosomes during translation and 
inhibit mRNA degradation, thereby resulting 
in greater accumulation of these transcripts. 
This accumulation sequesters a substantial 

portion of the cell’s ribosomes in an unproduc-
tive state and thus strongly affects cell growth.

Despite the scale and detail of this study, 
however, the recipe for efficient translation 
remains far from perfected. Only around half 
of the measured differences in protein synthe-
sis were accounted for by the design param-
eters that the authors considered. Many other 
factors and mechanisms therefore remain to be 
discovered and understood.

The lack of a complete explanation high-
lights a major challenge in trying to under-
stand sequence-to-function links in biology. 
The combinatorics of most genetic sequences 
far exceeds the number of data points that can 
be collected. Although DoE can help maximize 
what is learned, it relies on an understanding 
of factors that have been deemed important a 
priori. This problem is amplified as research 
moves toward more complex biological sys-
tems and processes—such as protein fold-
ing, metabolic engineering, and bioprocess 
design—whose features must be carefully 
tuned in unison with the others.

Does developing a full understanding of 
the biological processes really matter for 
most applications? Unlike those in nature, 
the demands in industry are often highly 
constrained. Cells can be kept under almost 
constant conditions in a carefully controlled 
bioreactor, or a protein product may have a 
fixed amino acid sequence that allows for only 
a relatively small set of synonymous codon 
changes. Constraining biology, both geneti-
cally and environmentally, can help decrease 

the number of factors that must be considered 
and simplify the search for designs that pro-
duce the desired outputs.

Cambray et al.1 show how far the field has 
come in the synthesis and testing of genetic 
systems en masse. As capabilities continue 
to grow, a point will inevitably be reached in 
which the constrained genetic-design spaces of 
some applications are sufficiently sampled for 
machine learning to become effective (Fig. 1). 
The use of machine learning would decrease 
the need to know which factors matter up front 
and allow sequence–function relationships to 
be deciphered from data alone10. The combi-
nation of DoE-based DNA-library synthesis, 
high-throughput measurement approaches, 
and modern machine-learning tools such as 
deep learning offers exciting prospects for those 
wishing to disentangle multifactorial research 
questions in biology and biotechnology.
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