Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture

Abstract

Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5–15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution1. If several cloned R genes were available, it would be possible to pyramid R genes2 in a crop, which might provide more durable resistance1. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational genomics strategy for resistance gene cloning.
Figure 2: Cloning of Sr22 and Sr45 by sequencing EMS-induced susceptible mutants.
Figure 3: Stem rust infection phenotypes of Fielder and transgenic wheat lines carrying the Sr22 gene derived from Schomburgk.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. McDonald, B.A. & Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40, 349–379 (2002).

    Article  CAS  Google Scholar 

  2. Dangl, J.L., Horvath, D.M. & Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment. Science 341, 746–751 (2013).

    Article  CAS  Google Scholar 

  3. Kuang, H., Woo, S.S., Meyers, B.C., Nevo, E. & Michelmore, R.W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16, 2870–2894 (2004).

    Article  CAS  Google Scholar 

  4. Smith, S.M., Pryor, A.J. & Hulbert, S.H. Allelic and haplotypic diversity at the rp1 rust resistance locus of maize. Genetics 167, 1939–1947 (2004).

    Article  CAS  Google Scholar 

  5. Gaut, B.S., Wright, S.I., Rizzon, C., Dvorak, J. & Anderson, L.K. Recombination: an underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 8, 77–84 (2007).

    Article  CAS  Google Scholar 

  6. Hulbert, S.H., Webb, C.A., Smith, S.M. & Sun, Q. Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39, 285–312 (2001).

    Article  CAS  Google Scholar 

  7. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    Article  CAS  Google Scholar 

  8. Andolfo, G. et al. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol. 14, 120 (2014).

    Article  Google Scholar 

  9. Henry, I.M. et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and Next-Generation Sequencing. Plant Cell 26, 1382–1397 (2014).

    Article  CAS  Google Scholar 

  10. Periyannan, S. et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788 (2013).

    Article  CAS  Google Scholar 

  11. Gerechter-Amitai, Z.K., Wahl, I., Vardi, A. & Zohary, D. Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20, 281–285 (1971).

    Article  Google Scholar 

  12. The, T.T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nat. New Biol. 241, 256 (1973).

    Article  CAS  Google Scholar 

  13. Olivera Firpo, P. et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013/14. Phytopathology 105, 917–928 (2015).

    Article  Google Scholar 

  14. The, T.T. et al. in 7th International Wheat Genetics Symposium (eds. Miller, T.E. & Koebner, R.M.D.) 901–909 (Bath Press, Bath, UK, 1988).

  15. Rouse, M.N. & Jin, Y. Stem rust resistance in A-Genome diploid relatives of wheat. Plant Dis. 95, 941–944 (2011).

    Article  CAS  Google Scholar 

  16. Witek, K. et al. Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. doi:10.1038/nbt.3540 (2016).

  17. Kerber, E.R. & Dyck, P.L. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11, 639–647 (1969).

    Article  Google Scholar 

  18. Marais, G.F., Potgieter, G.F., Roux, H.S. & le Roux, J. An assessment of the variation for stem rust resistance in the progeny of a cross involving the Triticum species aestivum, turgidum and tauschii. S. Afr. J. Plant Soil 11, 15–19 (1994).

    Article  Google Scholar 

  19. Periyannan, S. et al. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor. Appl. Genet. 127, 947–955 (2014).

    Article  CAS  Google Scholar 

  20. Steuernagel, B., Jupe, F., Witek, K., Jones, J.D. & Wulff, B.B. NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31, 1665–1667 (2015).

    Article  CAS  Google Scholar 

  21. Saintenac, C. et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783–786 (2013).

    Article  CAS  Google Scholar 

  22. International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).

  23. Mayer, K.F. et al. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).

    Article  CAS  Google Scholar 

  24. Finn, R.D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article  CAS  Google Scholar 

  25. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  Google Scholar 

  26. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).

    Article  CAS  Google Scholar 

  27. Lagudah, E.S., Appels, R., Brown, A.H.D. & McNeil, D. The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34, 375–386 (1991).

    Article  CAS  Google Scholar 

  28. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  29. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  30. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  Google Scholar 

  31. Fiume, M. et al. Savant Genome Browser 2: visualization and analysis for population-scale genomics. Nucleic Acids Res. 40, W615–W621 (2012).

    Article  CAS  Google Scholar 

  32. Paull, J.G., Pallotta, M.A., Langridge, P. & The, T.T. RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor. Appl. Genet. 89, 1039–1045 (1994).

    Article  CAS  Google Scholar 

  33. Khan, R.R. et al. Molecular mapping of stem and leaf rust resistance in wheat. Theor. Appl. Genet. 111, 846–850 (2005).

    Article  CAS  Google Scholar 

  34. Kota, R., Spielmeyer, W., McIntosh, R.A. & Lagudah, E.S. Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 112, 492–499 (2006).

    Article  CAS  Google Scholar 

  35. Periyannan, S.K., Bansal, U.K., Bariana, H.S., Pumphrey, M. & Lagudah, E.S. A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theor. Appl. Genet. 122, 1–7 (2011).

    Article  Google Scholar 

  36. Akhunov, E.D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11, 702 (2010).

    Article  CAS  Google Scholar 

  37. Luo, M.C. et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc. Natl. Acad. Sci. USA 110, 7940–7945 (2013).

    Article  CAS  Google Scholar 

  38. Rouse, M.N. & Jin, Y. Genetics of resistance to race TTKSK of Puccinia graminis f. sp. tritici in Triticum monococcum. Phytopathology 101, 1418–1423 (2011).

    Article  CAS  Google Scholar 

  39. Krattinger, S.G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  Google Scholar 

  40. Wang, M.B., Li, Z.Y., Matthews, P.R. & Upadhyaya, N.M. Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hortic. 461, 401–408 (1998).

    Article  CAS  Google Scholar 

  41. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223, 189–198 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from the Gatsby Charitable Foundation, UK; Two Blades Foundation, USA; Biotechnology and Biological Sciences Research Council, UK; Borlaug Global Rust Initiative (BGRI) Durable Rust Resistance in Wheat (DRRW) Project (administered by Cornell University with a grant from the Bill & Melinda Gates Foundation and the UK Department for International Development); USDA-ARS National Plant Disease Recovery System; Grains Research and Development Corporation, Australia; and a fellowship to A.H. from Universiti Putra Malaysia (UPM), Malaysia. We are grateful to colleagues in The Sainsbury Laboratory and the Two Blades Foundation for helpful discussions. This research was supported in part by the NBI Computing infrastructure for Science (CiS) group and Dan MacLean's group by providing computational infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

B.S., S.K.P., I.H.-P., K.W., M.N.R., G.Y., A.H., M.A., and H.B. performed experiments. B.S., S.K.P., E.S.L. and B.B.H.W. wrote the manuscript. B.S., S.K.P., K.W., J.D.G.J., E.S.L., and B.B.H.W. contributed to the design of the study.

Corresponding authors

Correspondence to Evans S Lagudah or Brande B H Wulff.

Ethics declarations

Competing interests

B.B.H.W., B.S., E.S.L., J.D.G.J., K.W., and S.K.P. have filed two patent applications based on this work (US patent application nos. 20150240233 and 62/200,894).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–12 (PDF 1473 kb)

Supplementary Program Code (ZIP 111 kb)

Supplementary Data (ZIP 2283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steuernagel, B., Periyannan, S., Hernández-Pinzón, I. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34, 652–655 (2016). https://doi.org/10.1038/nbt.3543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing