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Understanding how drugs affect the immune system has 
consequences for treating disease and minimizing unwanted 
side effects. Here we present an integrative computational 
approach for predicting interactions between drugs and 
immune cells in a system-wide manner. The approach  
matches gene sets between transcriptional signatures to 
determine their similarity. We apply the method to model  
the interactions between 1,309 drugs and 221 immune 
cell types and predict 69,995 interactions. The resulting 
immune-cell pharmacology map is used to predict how five 
drugs influence four immune cell types in humans and mice. 
To validate the predictions, we analyzed patient records and 
examined cell population changes from in vivo experiments. 
Our method offers a tool for screening thousands of 
interactions to identify relationships between drugs and  
the immune system.

Pharmaceutical drugs of all types and classes influence the immune 
system1–4 but the mechanisms of these perturbations are often poorly 
understood. Some drugs target immune cells specifically to treat 
immunological diseases, such as B-cell lymphomas (e.g., rituximab 
(Rituxan)5), whereas others have broad immunosuppressive or anti-
inflammatory effects (e.g., thalidomide (Thalomid)6, leflunomide 
(Arava)7 or sirolimus (Rapamune)8). However, many drugs that were 
not developed to be immunomodulatory are nevertheless associ-
ated with mild to severe immune reactions. For example, several  
anti-infectives, anti-convulsants and anti-diabetic drugs are believed 
to induce the skin hypersensitivity reaction urticaria9–11, and psycho-
analeptics, such as respiridone (Risperdal), memantine (Namenda) 
and citalopram (Celexa), have the rare, but life-threatening side effect 
of an immune-complex hypersensitivity called Stevens-Johnson 
syndrome1. Our lack of understanding of the global interactions 
between pharmaceuticals and the immune system confounds drug 
development, conceals potentially serious side effects of marketed  

compounds12–14 and limits discovery of drugs that could be  
repurposed for immune diseases.

Published studies on the effects of drugs on immune cells have 
mainly examined the consequences of administering one drug to a 
single cell type15,16. Even when high-throughput screens have been 
performed, they usually have focused on a specific target or readout 
(e.g., changes in select cell surface markers)17–19 and ignored other 
perturbations to the system. In the present report, we build on pre-
vious systems-level approaches that compare and integrate differ-
ential expression profiles of disease with drug perturbation profiles 
to discover potential new drug indications20–22. Recent large-scale 
collaborative efforts have produced compendia of molecular pro-
files for both pharmaceutical drugs23 and immune cells24. To our 
knowledge, systematic integration and analysis of chemogenomic and  
immunogenomic data have not been performed.

We integrated drug perturbation data obtained with human cancer 
cells and gene expression data obtained from mouse immune cells. Our 
analysis quantifies the likelihood that a drug affects an immune cell state 
change in the form of an ‘immunemod score’. In total, we generated 304 
immune cell state transitions from 221 immune cell types. We studied 
all combinations of 1,309 drugs and 304 immune cell state transitions, 
and found 69,995 significant interactions (of 397,936 possible interac-
tions). From these interactions, we constructed an immune-cell phar-
macology (IP) map of predicted drug–immune cell connections, which 
includes both known interactions as well as ones that have—to our 
knowledge—not been reported previously. To address concerns about 
integrating data across species, we examined predictions in both mouse 
and humans. We performed in vivo experimental validation of three pre-
dictions and obtained 100% agreement. In addition, we found evidence 
in patient data that supported our predicted interactions between drugs 
and immune cells in two independent sets of electronic medical records. 
Our results suggest that integrative computational analysis can improve 
understanding of the effects of drugs on the immune system and provide 
a framework for rational manipulation of these effects.

RESULTS
Generating molecular signatures of immune cells
The Immunological Genome Project (ImmGen) is the largest pub-
licly available compendium of genome-wide transcriptional expres-
sion profiles for more than 250 distinct immunological cell states 
in mice25–27. The data comprise 14 categories of immune cell types  
collected from 25 tissue locations (Supplementary Fig. 1). These 
states reflect diverse stages of lineage differentiation, collected from 
various tissues, using an assortment of genetic variants, in response 
to stimulations with chemicals, bacteria or viruses, and at separate 
effector stages. One challenge with using ImmGen data for probing  
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immune perturbations is that gene expression profiles were captured 
at a single state, which provides limited information on cellular 
response to external stimuli. Thus we created a data set that reflects 
immune cell responses to perturbations by generating differentially 
expressed gene signatures between two immunological states that dif-
fer by a single parameter (e.g., cell types with identical surface mark-
ers isolated from separate tissues or two cell types that differ by one 
surface marker such as naive vs. memory CD4+ T cells).

We compiled a set of 304 immune cell state change signatures from 
221 unique cell types in the ImmGen compendium to explore how drug 
perturbations alter the immune system (Fig. 1a,c and Supplementary 
Table 1). The full ranked lists are provided in Supplementary Table 2.  
These signatures group by similar cell types when clustered by the 
Jaccard distance between sets of the extreme fold-change genes 
(Supplementary Fig. 2). The average Jaccard distances between 
related cell types exceeded the overall average background distance 
(Supplementary Fig. 3) and showed significant differences between 
immune cell subsets (P = 6 × 10−15, ANOVA).

Generating drug chemogenomic profiles
The Connectivity Map (CMap) is a data repository of genome-wide 
transcriptional expression profiles collected from 6,100 experimental 
conditions of 1,309 unique compounds applied to human cell lines23. 
Each perturbation is represented by a list of differentially expressed 
genes that we ranked based on fold change. To capture the consen-
sus profile of a compound across conditions, we merged multiple 
experiments (i.e., different drug concentrations or cell lines) for the 
same compound into a single prototype ranked list (PRL), using a 
hierarchical majority-voting scheme28,29 (Fig. 1a). The collection of 
PRLs created a comprehensive resource for developing a systematic 
screening tool to look for connections between drug perturbations 
and immunological states (Supplementary Table 3).

IP map construction
We created a system-wide interaction map 
between drugs and immune cells by match-
ing the 1,309 drug perturbation profiles in 
CMap to the 304 immune cell state changes 
we curated from the ImmGen compendia. 
Our matching algorithm evaluates the simi-
larity between two transcriptional expression 
patterns by comparing the top- and bottom-
ranked genes from both profiles20,21 (Fig. 1b, 
Supplementary Fig. 4 and Online Methods). 
Specifically, we tested the similarity between 
the immunological state–change profiles 
(state B vs. state A) to each of the drug pertur-
bation profiles (treated vs. untreated) by com-
puting an immunemod score based on the 
overlap of the top- and bottom-ranked genes 
in each profile. A positive immunemod score 
indicates that the specific drug treatment  

profile is similar to immune cell state B and suggests the drug biases 
the immune cell toward state B, whereas a negative score signals the 
drug treatment shifts the cell toward state A (Fig. 1b,d).

To evaluate the significance of our predicted drug-cell interactions, 
we generated random drug perturbation profiles for each compound 
and repeated the analysis 1,000 times for each immune cell state 
change (Supplementary Fig. 4a). A complete computational integra-
tion of the CMap and ImmGen data sets produced 397,936 potential 
connections between drugs and immune cell state changes. To assess 
whether a predicted connection was robust, we varied the set size of 
the top- and bottom-ranked genes used for the matching algorithm 
and recalculated all ~400,000 immunemod score P-value pairs. The 
proportion each drug-cell interaction was significant among all gene 
set sizes provided a relative weight for each predicted interaction 
(Supplementary Fig. 4b,c). Larger weights indicate that a given drug-
cell interaction depends less on the set size chosen to calculate the 
immunemod score and signifies a robust connection. This selection 
process enabled discovery of previously unknown interactions while 
minimizing spurious connections (Supplementary Fig. 5).

Using the significant and robust interactions, we made connections 
between drugs and immune cell state changes to generate a comprehen-
sive IP map. The IP map contains 69,995 connections (Supplementary 
Table 4) that are significant at a false-discovery rate (FDR) < 5% and 
that appear in > 85% of gene set sizes. Although every drug showed a 
significant association with at least one of the 304 immunological state 
changes, the most frequent number of state transitions is 26, and 144 
drugs influence 100 or more state changes (Supplementary Fig. 6). 
Drugs predicted to influence the largest number of immune cell state 
transitions include potent immunomodulators, many of which induce 
significant immunosuppression (Table 1). Drugs with immunomodu-
latory activity (e.g., anti-inflammatory agents, anti-histamines and 
immunosuppresants) show a significant enrichment for immune cell 
interactions (E = 1.5, P = 0.002, E = 1.4, P = 0.04, E = 2.1, P = 0.02, 
respectively, and Supplementary Table 5).
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Figure 1 Constructing the drug-cell 
interactome. (a) Schematic overview of the  
data integration and processing steps.  
(b) Schematic depiction of the matching 
algorithm and score distribution. (c) Summary 
of immunological cell state changes studied.  
(d) Diagram of the influence of drugs on 
immune cell state changes predicted by the  
sign of the immunemod score.
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Global properties of the IP map
To examine the global landscape of the IP map, we used the immune-
mod score as a similarity metric and organized the complete set of drug 
and immune cell interactions through unsupervised hierarchical clus-
tering (Fig. 2a). We found that drugs with similar therapeutic classes 
cluster together. For example, anti-psychotics (clozapine (Clozaril), 
loxapine (Adasuve), haloperidol (Haldol) and fluphenazine) formed 
a cluster, as did purine analogs (mercaptopurine (Purixan) and tio-
guanine), and calcium channel blockers (dexverapamil, bepridil and 
perhexiline). These three clusters are predicted to interact with the 
largest number of immune cell subset transitions. Drug clusters also 
showed enrichment for the same molecular target. For example, the 
anti-diabetic drugs troglitazone (Rezulin) and rosiglitazone (Avandia) 
both target PPARG and ACSL4 as part of their mechanism of action 
for reducing blood glucose. Based on their immunemod scores, these 
drugs are predicted to influence T cell and natural killer (NK) cell 
differentiation, providing a potential explanation for the therapeutic 
benefits observed in patients with autoimmune disease30,31.

We identified 28 drugs associated with later stages of lineage devel-
opment across multiple cell types (e.g., stem/progenitor and pre-B 
cells; Fig. 2a and Supplementary Table 6). These drugs include  

compounds used to treat diseases of metabolism and the nervous, 
musculo-skeletal and respiratory systems, or are anti-infectives. 
Moreover, these 28 drugs are enriched for (i) agents with immuno-
suppressant, anti-psoriatic and dopaminergic activity, and (ii) com-
pounds that target the chromatin-associated enzyme PARP1, which is 
a key regulatory molecule for differentiation and proliferation32,33. By 
contrast, 17 compounds influence immature hematopoietic cell sub-
sets (Fig. 2a and Supplementary Table 7). These compounds aren’t 
associated with a single therapeutic class, yet their molecular targets 
are enriched for processes associated with oxidoreductase activity and 
alkylation repair, both of which are important for differentiation and 
maintaining stem cell integrity34,35.

To further characterize the drug-immune cell interactome, we 
performed unsupervised hierarchical clustering with multiscale 
bootstrap resampling36. Out of the 143 cell type changes, 119 fit into 
one of 25 stable cell clusters (P < 0.05, multiscale bootstrap analysis) 
(Supplementary Table 8). Almost half (13/25) of the stable cell clus-
ters exhibited a significant over-enrichment (E > 2, P < 0.05) for one 
or more cell types (Supplementary Table 9). By comparison, 1,089 
drugs out of the 1,309 in total fell into one of 409 stable drug clusters 
(P < 0.05, multiscale bootstrap analysis) (Supplementary Table 10). 
Almost 87% (356/409) of the stable drug clusters showed a significant 
over-enrichment (E > 4, P < 0.05) for one or more therapeutic classes 
(anatomical therapeutic chemical (ATC) classification levels 1–3)  
or a molecular target (Supplementary Table 11). For example, 88 
drug clusters showed significant enrichment for at least one ATC clas-
sification system level 1 description. The enrichments are driven by an 
abundance of anti-thrombotic agents or vitamin K and other hemo-
statics (B), contrast agents or diagnostic radiopharmaceuticals (V),  
and alkylating agents, cytotoxic antibiotics, hormone antagonists or 
immunosuppressants (L) (Supplementary Fig. 7).

To examine the features of stable clusters in greater detail, we  
identified 53 drug clusters enriched for a therapeutic class and molecular  

Table 1 Drugs predicted to influence largest number of immune 
state changes
Drug State changes Status Drug class

Puromycin 138 Experimental Aminonucleoside antibiotic
Quinostatin 129 Experimental PI3K inhibitor
Deptropine 129 Approved Anti-histamine
Gliclazide 127 Approved Anti-diabetic
Fluspirilene 127 Approved Anti-psychotic
Irinotecan 127 Approved Topoisomerase inhibitor
Pyrvinium 126 Experimental Anti-helmintic
Bepridil 126 Approved Calcium channel blocker
Daunorubicin 126 Approved Anthracycline
Celastrol 125 Experimental Anti-inflammatory
Niclosamide 125 Approved Anti-helmintic
Pimozide 124 Approved Anti-psychotic
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Figure 2 Overview of the IP map. (a) Clustered 
heat map of the drugs and immune cell state 
changes organized by the immunemod score. 
Venn diagrams reflect the number of drugs 
that shift immune cell states in a specific or 
nonspecific direction. (b) Two-dimensional heat 
map of the stable cell and drug clusters with a 
significant enrichment for at least one cell type 
(rows) or a level 1 therapeutic class (columns). 
Cell types include: DC, dendritic cell; Mac, 
macrophage; NKT, natural killer T cell; mono, 
monocyte; T4, CD4+ T cell; Tgd, gamma-delta 
T cell; PreT, pre T cell; B, B cell; PreB, pre-B 
cell; Stromal, stromal cell. Therapeutic classes 
include: H, systemic hormonal preparations, 
excluding sex hormones and insulins; V, various; 
B, blood and blood-forming organs; P, anti-
parasitic products; M, musculoskeletal system;  
L, anti-neoplastic and immunomodulating agents; 
G, genito-urinary system and sex hormones; 
R, respiratory system; A, alimentary tract and 
metabolism; D, dermatologicals; J, anti-infectives 
for systemic use; S, sensory organs; N, nervous 
system; and C, cardiovascular system. Areas 
of corresponding circles represent the number 
of cells or drugs per cluster (2–14 cells, 2–13 
drugs). Cluster labels (e.g., cl214) refers to the 
cluster number in Supplementary Tables 9 and 
10 for cells and drugs, respectively. Gray squares 
indicate predicted interaction between at least 
one cell-drug pair in the pairs of clusters.
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target, and intersected these clusters with the 13 cell clusters 
enriched for one or more cell type (Fig. 2b). The intersecting clusters  
revealed that specific immune cell subsets (e.g., pre-lymphocytes, 
monocytes, NKT cells, and gamma-delta T cells) overlap with multiple 
drug categories, whereas other subsets (e.g., B cells and macrophages) 
intersect with a couple categories. A few drug clusters (e.g., cl195, 
cl335) influenced multiple cell types, whereas other clusters (e.g., cl2, 
cl48, cl49, cl97) influenced a single cell type. The drug cluster with the  
greatest overlap across immune cells (cl195) was enriched for anti- 
neoplastic drugs that are cytotoxic antibiotics (e.g., doxorubicin (Doxil)  
and mitoxantrone).

We discovered a strong positive association between the number 
of molecular targets for a given drug and the number of interactions 
predicted to influence immunological state transitions (P = 1.7 × 10−5, 
linear regression). When we examined adverse drug interactions using 
the side effect resource (version 2)1, we found no relationship between 
the reported number of side effects for a drug and the number of 
immune cell interactions (P = 0.8, linear regression). However, as side 
effect data have a broad frequency distribution and are difficult to 
measure accurately2, this lack of correlation may reflect the variation 
inherent in the bias of capturing and reporting side effects.

Connections and substructures in the IP map
To examine possible immunological outcomes that might result from 
connections in the IP map, we focused on immune cell state changes 

between cell subsets or tissues. Drugs and cell state transitions were 
organized by therapeutic class and category of immune cell state tran-
sition (e.g., within a subset or between tissue) to provide an overview  
of all the predicted connections that are statistically significant  
(Fig. 3a and Supplementary Fig. 8). We identified promiscuous 
drugs by their interactions with a large number of subset transitions  
(Table 2). Given the uneven cell type distribution within the sub-
set state changes (Supplementary Table 1), we defined drug hubs 
based on interactions with the greatest number of cell types, which we 
hypothesize could have the largest influence on the immune system. 
By contrast, drug islands were defined on the basis of interacting with 
the fewest number of cells (Fig. 3b).

Hubs were enriched for anti-neoplastic drugs (E = 13.8, P <  
1 × 10−5; Supplementary Fig. 9), which could be expected given 
the influence these compounds have on immune cells1,2. Hubs were 
also enriched for nervous system compounds, such as the selective 
serotonin reuptake inhibitor zimeldine (E = 1.3, P < 0.04), which 
was pulled off the market due to a rare, but severe adverse reaction 
leading to the autoimmune condition known as Guillain-Barré syn-
drome37, and the anti-seizure drug topiramate (Topamax), which was 
shown to be an effective treatment for inflammatory bowel disease 
in a preclinical model21 (Supplementary Fig. 10a). By contrast, drug 
islands were enriched for metabolic drugs that included the anti- 
diabetic compounds gliquidone and metformin (Fortamet, Glumetza; 
Supplementary Fig. 10b). This metabolic island in the IP map  
mirrors the low connectivity found in metabolic diseases in the 
human disease network38.

To explore drugs predicted to influence a portion of the adaptive 
immune system, we identified a subnetwork based on the largest  
magnitude immunemod scores for T-cell subsets and tissues 
(Supplementary Fig. 11). This subnetwork includes more than 1,000 
compounds predicted to influence CD4+ or CD8+ subsets, with 113 
and 202 compounds unique to each group, respectively. The top 
immunemod score for this subnetwork is between CD4+FoxP3+  
T cells and guanfacine (Tenex, Intuniv; Supplementary Figs. 12 
and 13a). Guanfacine is an α2A receptor (ADRA2A) agonist used  
for lowering blood pressure and treating attention deficit hyperactiv-
ity disorder (ADHD)39.

To verify that the immunemod score identifies a drug’s influence 
on a specific cell subset, we administered the anti-hypertensive drug 
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Table 2 Drugs predicted to influence largest number of immune 
subset changes

Drug
Subset  
changes Status Drug class

Irinotecan 60 Approved Topoisomerase inhibitor
Puromycin 58 Experimental Aminonucleoside antibiotic
Deptropine 55 Approved Anti-histamine
Tyrphostin AG-825 54 Experimental Tyrosine kinase inhibitor
0175029-0000 54 Experimental Unknown
Daunorubicin 54 Approved Anthracycline
Medrysone 53 Approved Corticosteroid
Bepridil 52 Approved Calcium channel blocker
Etacrynic acid 52 Approved Loop diuretic
Alsterpaullone 52 Experimental Cyclin-dependent kinase inhibitor
Primaquine 51 Approved Aminoquinoline
Procaine 50 Approved Local anesthetic
Gliclazide 50 Approved Anti-diabetic
Cinchonine 50 Experimental Alkaloid
Piperidolate 50 Approved Anti-cholinergic
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Figure 4 Influencing immune cell migration using the IP map. (a,b) Immunemod scores for  
influencing immune cells between tissues using clioquinol (a) or amantadine (b). Labels indicate the  
direction of influence for the drug to a cell type between tissues x -> y, and bar width is the magnitude  
of the immunemod score. Shown are the significant and robust drug-cell interactions. Orange arrows  
reflect predicted top interaction with clioquinol and non-interaction with amantadine. Purple arrows  
point to predicted interactions with additional experimental validation. (c) Biaxial flow cytometry plots  
of Ly6G+CD11b+ cells collected from various tissues of treated and untreated mice. Cells were  
gated on CD45+DAPI− population. (d) Frequencies of Ly6G+CD11b+ neutrophils collected from blood, bone  
marrow and the peritoneal cavity (n = 8 per group). Black bars reflect the median expression of all samples in each condition and the bottom and top 
of the boxes represent the 25th and 75th percentiles, respectively. Whiskers on boxplots represent the max/min values up to 1.5× the interquartile 
range (IQR). Data exceeding 1.5× IQR shown as open circles. Data are representative of three to four experiments. Significance assessed by ANOVA. 
(e) Quantitative analysis of neutrophil marker gene expression. The abundance of each transcript in spleen, liver, lung and bone marrow (BM) was 
calculated relative to the appropriate control (PEG400 for clioquinol or PBS for amantadine). Each experimental condition includes eight samples. 
Significance assessed by ANOVA. (f) SPADE trees of CyTOF data collected from cells in spleen. Arrows highlight Ly6G+CD11b+ population increase after 
clioquinol treatment. Horizontal color scales represent median intensity for marker indicated (blue, low; red, high).
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guanfacine to mice and measured the percentages of regulatory  
T-cell subsets isolated from spleens. Based on the immunemod score 
direction, we reasoned the frequency of regulatory T cells should 
increase following treatment with guanfacine. In comparison to 
untreated mice, the treated mice showed a 5% increase in the average 
frequency of CD62L+ cells within the CD4+FoxP3+ T-cell compart-
ment (42.0% vs. 37.0%: n = 15 treated vs. n = 14 untreated, P = 0.01; 
Supplementary Fig. 13b).

When we examined the CD8+ subsets, the top immunemod score 
was to the anti-Parkinsonian drug trihexyphenidyl (Artane). One 
molecular target for trihexyphenidyl is the muscarinic acetylcholine 
receptor M1 (CHRM1). When the gene that encodes for this molecu-
lar target is knocked out in a mouse model, CD8+ cells from these 
mice exhibit defective cytotoxic capability40.

Validation of drug–immune cell interactions in humans
Immune cell data were collected from mice, and drug perturbation 
data were gathered from human cancer cell lines. One concern with 
integrating these data is whether the findings from mice translate to 
humans. We tested whether interactions predicted by the IP map could 
be observed in humans by examining immune cell counts of patients 
administered drugs versus untreated patients. To compare patient 
populations, we examined complete blood counts for more than 2.3 
million electronic medical records in the Mount Sinai Hospital System 
and selected individuals who were treated and had blood cell counts 
collected within 1 month of receiving a drug.

Given the constraints of routine clinical laboratory tests found in 
electronic medical records, we restricted IP map predictions to two 
common drugs predicted to influence monocytes and neutrophils. 
The IP map predicted the general anesthetic propofol (Diprivan) and 
the anti-hypertensive spironolactone (Aldactone) would increase neu-
trophils and monocytes, respectively (Fig. 3c). Propofol increased 
neutrophil counts by 2,500 cells/mm3, and spironolactone increased 
monocyte frequencies 1.6% (Fig. 3d). Although the cell popula-
tion changes were small, both shifts were significant (P < 1 × 10−100, 
Wilcoxon rank sum). Furthermore, the neutrophil increase shifted 
most patients beyond the upper normal range. To validate these 
observations, we examined the same drug-immune cell pairings 
in the electronic medical records of Columbia University Medical 
Center. This independent data source showed the same direction and  
significance for both drugs and their predicted influence on immune 
cells (Supplementary Table 12).

Validation of clioquinol influencing neutrophil migration
To assess the accuracy and specificity of a predicted interaction in 
the IP map, we experimentally validated the influence of the drug  
clioquinol on neutrophil migration from the bone marrow to 
the blood. This hypothesis emerged from a prediction with a top 
immunemod score (Fig. 4a), as well as the desire to identify a drug 
that could modify immune system dynamics between tissues and 
would be straightforward to evaluate with an abundant cell type  
in vivo. Moreover, neutrophil regulation plays a critical role in health 
and disease so new drugs that modify their kinetics might have  
therapeutic potential41–43.

We selected two drugs for the experiment on the basis of their 
immunemod scores and P-values. These statistical metrics identified 
the highest immunemod score, and the corresponding lowest P-value, 
for the predicted pairing between neutrophils and clioquinol (Fig. 4a). 
Clioquinol is an anti-fungal and anti-protozoal drug without a known 
mechanism of action, but the compound has been tested in a preclinical 
model for Alzheimer’s disease44,45. As a control, we selected the anti-viral 

and anti-Parkinsonian drug amantadine (Symmetrel) as a control drug 
because our algorithm predicted an immunemod score of zero for the 
amantadine-neutrophil interaction (Fig. 4b). Based on the immunemod 
scores, we reasoned that clioquinol would influence neutrophil migra-
tion from the bone marrow to the blood, whereas amantadine would 
have no influence on neutrophil migration (Fig. 4b).

To evaluate the predicted influence of clioquinol on neutrophils in vivo,  
we injected C57BL/6 mice with clioquinol or vehicle control (n = 8 
treated and n = 8 untreated). Following the treatment with clioquinol,  
but not the control, neutrophils were recruited to the peritoneal  
cavity (Fig. 4c,d and Supplementary Fig. 14). In mice treated with 
clioquinol, more than 70% of the hematopoietic cells in the cavity 
were neutrophils, whereas in mice treated with vehicle alone, less 
than 5% were neutrophils, similar to untreated mice. This recruitment  
coincided with neutrophil mobilization from bone marrow to blood 
(Fig. 4c,d and Supplementary Fig. 14). Moreover, qPCR analysis 
of collected tissue samples revealed increased abundance of tran-
scripts of neutrophil-specific chemokines such as Cxcl1, Cxcl2 and 
Cxcl5 (Fig. 4e). We also detected Cxcr2 transcript, which suggests  
infiltration of neutrophils in the analyzed samples.

As predicted, in mice treated with amantadine there was no signifi-
cant change in the frequencies of neutrophils in blood, bone marrow 
or peritoneal cavity (Fig. 4d). To survey a broader array of immune cell 
changes following treatment, we performed mass cytometry (CyTOF) 
using a panel of 19 markers to evaluate cell differences in the spleens 
of mice treated with clioquinol or vehicle control. Consistent with 
what we observed by flow cytometry, neutrophil numbers increased 
(Ly6G+CD11b+ cells) after treatment with clioquinol (Fig. 4f).  
Furthermore, when we examined the complete set of markers using 
SPADE trees46, we found an increase in naive CD8+ cells (CD45+

CD3+CD4−CD8+Thy1.2+TCRb+CD62LhiCD44lo) (Supplementary  
Fig. 15), which was also predicted by our algorithm albeit with a  
lower immunemod score (Fig. 4a).

DISCUSSION
We describe an integrative computational approach to map the 
effects of drugs on immune function. We compared chemogenomic 
and immunogenomic profiles and created an immunemod score to 
quantify the likely influence of a drug perturbation on an immune 
cell based on the overlap of their transcriptional profiles. Although 
the complete set of interactions between drugs and immune cells is 
larger than what we have modeled here, our systematic examination 
of almost 400,000 potential interactions is a step toward mapping 
this massive space. In vivo experiments to confirm one prediction—
that the selective alpha-2A adrenergic receptor agonist guanfacine 
increases the proportion of regulatory T cells—suggested that a drug 
used to treat hypertension and anxiety might be repurposed to pro-
mote peripheral tolerance. To examine the utility of using the IP map 
to identify drugs with the highest immunemod scores for a given 
immunological state transition, we predicted that the change in neu-
trophil proportions between the blood and bone marrow would be 
most influenced by the drug clioquinol. This inference is supported 
by the proportions of neutrophils collected from blood and bone mar-
row and the pattern of neutrophil-specific genes expressed in various 
tissues. A previous study that used compounds to manipulate Cxcr2 
and Cxcr4 expression levels showed neutrophil mobilization patterns 
similar to what we observed47. Although clioquinol has neurotoxic 
effects, these findings imply its potential use as a short-term neu-
trophil booster in certain contexts. Additionally, this finding suggests  
that our approach could enable the discovery of compounds that  
control neutrophil kinetics to resolve inflammatory responses48.
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A limitation of the IP map is that it combines data sets from mouse 
and human, and therefore the predicted connections might not translate  
to human immune cells. Several recent studies have shown both simi-
larities and differences between the transcriptional profiles of immune 
cells in mice and humans49–52. However, both of our predictions were 
confirmed in electronic medical records at Mount Sinai and in an 
independent data set from Columbia University. Taken together, our 
computational analyses and experimental results suggest that the IP 
map captures immune responses in both humans and mice.

Another limitation is that the CMap drug profiles were generated on 
a limited set of cancer cell lines using whole-genome transcriptional 
profiling. Although the efforts of the LINCS project (http://www.
lincsproject.org/) will greatly expand the number of compounds and 
include more cell lines, it is likely worthwhile to generate immune-
specific CMap signatures on at least a subset of immune cell types 
to further evaluate and improve the immunemod scoring method. 
Efforts such as the extensive transcriptional profiling of human cell 
lineage differentiation53 must be extended for a more comprehensive 
picture of human immunity, which will help us better understand 
how the ImmGen data will translate across species. We did not use 
chemical structure information, and we acknowledge that incorpo-
rating structural information and data other than transcriptional  
profiles54,55 would provide a more complete picture of the complexity 
of drug effects on the immune system.

The statistical bioinformatics method we used for systematically 
exploring drug-immune cell interactions follows a Kolmogorov-
Smirnov (KS) approach similar to that used by numerous other 
studies20,23,56. This method has been useful at identifying numerous  
biological connections that have been subsequently validated by 
experimentation. However, a limitation of the traditional KS approach 
using transcriptional data is an assumption of statistical independence 
among transcripts. Others have recently proposed potential solutions 
for this limitation57–60. When we incorporated a principal compo-
nent analysis (PCA)-based approach57 into our methods, the P-values 
did rise as expected. Under this alternative null model, the number 
of significant interactions decreases by about a factor of 3 from the 
independent shuffling method (Supplementary Fig. 5). However, it 
appears that PCA-based correction may be overly pessimistic at low 
FDR thresholds57–60. This observation seems to be reflected in our 
own analysis where we find that all of the experimentally tested and  
validated interactions fall above the significance threshold subse-
quent to PCA-adjusted permutation. To our knowledge, there has not  
yet been a systematic analysis of the various proposed enrichment analy-
sis methods on chemogenomic data based on uncorrelated gene sets.  
Systematic evaluation of permutation and expression de-correlation 
approaches for large-scale chemogenomic connectivity mapping is a 
fruitful area for future studies, especially as the chemogenomics com-
munity embraces reduced probe set arrays using the L1000 platform.

The apparently unknown interactions identified in the IP map may 
include many that warrant experimental follow-up. Other possible 
applications of our data include studying the contribution of immune 
cells to adverse drug reactions, the role of immune cell subsets in 
cancer and other diseases, and combination drug therapies. Moreover, 
global trends extracted from our data could provide guidelines and 
specific predictions on how to manipulate immune cells, uncover 
drug mechanisms of action, and select alternative compounds from 
the same therapeutic category with fewer immune cell side effects.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Drug and immune cell gene expression data. Drug-induced transcriptional 
profile changes determined from human cancer cell lines were obtained from 
the Connectivity Map (CMap) database23. We processed and analyzed version 2,  
which included 6,100 experiments using 1,309 compounds. Preprocessing 
and normalization steps were performed, as described previously23. To make 
cross-platform comparisons compatible, we standardized gene identifiers from 
microarray-specific probe identifiers to NCBI GeneID identifiers, selecting 
the maximum across individual probe expression values. To create a single 
rank-ordered expression profile for each of the 1,309 compounds, we merged 
multiple experiments for the same compound into a single Prototype Ranked 
List (PRL) following the processing described previously28,29. The final data 
set included 13,071 differential gene expression values for each of the 1,309 
compounds.

Immune cell gene expression data collected from steady-state profiling of 
249 distinct cell types were obtained from the ImmGen24. Preprocessing and 
normalization were performed as described previously61. As cell profiles were 
collected at steady state, we selected 221 unique cell types and created 304 dif-
ferential state signatures from the difference between two steady-state profiles 
(Supplementary Table 13). To make cross-species and cross-platform com-
parisons reasonable, we standardized gene identifiers from microarray-specific 
probe identifiers to NCBI GeneID identifiers, mapped mouse GeneID identifiers  
to their human ortholog, and selected the maximum across individual 
probe expression values. Finally, we converted differential state profiles to 
ranked lists ordered by differential expression values, creating a data set with 
11,153 differential gene expression values for each of the 304 immunological  
state changes.

IP map construction. We constructed a matrix of predicted interactions 
between each of the 1,309 drugs and 304 immunological state changes using 
a rank-based, pattern-matching strategy described previously20. (All Input 
Data, and Supplementary Source Code have been deposited at Synapse hosted 
by Sage Bionetworks. https://www.synapse.org/#!Synapse:syn4877787/files/) 
Briefly, for each trio of drug, cell and gene set size (d, c, s), we calculated an 
immunemod score (ImS) based on the degree of overlap between drug and 
immune cell gene sets at the extremes of the two ranked signatures. To obtain 
a measure of significance for the immunemod score, we shuffled the genes in 
the drug rank signature and calculated a permuted immunemod score (ImS*) 
for each drug, cell and gene set triplet (ImS*(di, cj, sk)]. We calculated the P-
value for each ImS by counting the number of randomized scores ImS*(di, cj, 
sk) that were greater than or equal to the absolute value of the actual scores 
ImS(di, cj, sk) and dividing by the number of permutations (nperms = 1,000). 
This permutation strategy sets the lower bound for P-values at 0.001, which 
yields a biased estimate for the number of false positives given the number 
of hypotheses under consideration. To provide accurate P-values at the lower 
range while containing the computational cost, we used the generalized Pareto 
distribution to model the P-value distribution and calculated improved esti-
mates for low P-values (counts < 1/100) based on the distribution of permuted 
immunemod scores62. We adjusted the P-values63 and selected an FDR of 5% 
as the cutoff for significance. To control for spurious interactions based on 
the size of the gene set used for matching, we varied the size of the matching 
set between 100 and 250 genes for each of the top and bottom extremes and 
recalculated all immunemod score, P-value pairs for every drug-cell interac-
tion. The proportion of times each drug-cell interaction was significant among 
all sizes of gene sets provides a relative strength for any given interaction. A 
predicted interaction was considered to be strong and stable if it was significant 
for 85% or more of the set sizes.

Data analysis. To assess the similarity between expression profiles of immune 
cell subsets, we calculated the Jaccard distance among all pairs of extreme 
fold-change genes, and used an ANOVA to evaluate the differences between 
immune cell subsets. We investigated a series of diagnostic plots and did not 
find significant deviations that would violate the assumptions of normality 
or homoscedasticity.

To organize the drugs and immune cells in an unbiased manner, we 
applied hierarchical clustering to the full interaction matrix using the com-
puted Pearson correlation coefficient as a distance metric between immune-

mod scores and complete linkage clustering to agglomerate drugs or cells. 
We used the pvclust R package36 to compute a bootstrap analysis of the 
clusters and identified a significant cluster if the approximately unbiased  
probability was >95%.

To determine the enrichment of an anatomical therapeutic class category, 
we calculated the fold-change and P-value. Fold-change enrichment (E) was 
calculated as a ratio of ratios E = (a/b)/(c/d), where a is the number of drugs 
with a particular category (e.g., “L”) in the cluster of interest, b is the number 
of drugs with that category in the overall data set, c is the total number of drugs 
in cluster and d is the total number of drugs overall. We used the hypergeo-
metric distribution to calculate the P-value and assess the significance of each 
enrichment calculation.

To examine the association between chemical features (e.g., molecular tar-
gets and drug side effects) and number of immune cell interactions, we imple-
mented a simple linear regression model. Chemical features followed a skewed 
distribution so we log-transformed the data, which adjusted the values so they 
followed a normal distribution. Based on diagnostic plots of the transformed 
data, we did not find deviations that violated the assumptions of normality 
and homoscedasticity that are central to regression models.

To test whether drug treatment with clioquinol or amantadine produced 
any difference in neutrophil cell frequencies in various tissue compartments, 
we used an ANOVA model to compare the treatment groups. Multiple group 
testing and P-values were evaluated using Tukey’s honest significant difference. 
For all ANOVA tests, we generated a series of diagnostic plots to examine:  
(i) the residual errors for outliers, (ii) the QQ plots for normality, and (iii) the 
square root of the standardized residuals for heteroscedasticity. In all cases, we 
did not find significant deviations that would violate the assumptions used in 
the ANOVA model. For comparison, we evaluated the treatment and control 
groups directly via the Wilcoxon rank sum test and found the median dif-
ferences between treatment (clioquinol, amantadine) and controls (PEG400, 
PBS) to follow the exact same pattern obtained using the ANOVA, with a 
similar maximum P-value for significant differences (P ≤ 0.01). To test whether 
guanfacine influence regulatory T-cell frequencies, we used a meta-analysis 
strategy64 to combine experimental conditions and groups, which allowed us 
to ascertain whether the overall differences from each independent experiment 
were robust and significant.

Electronic medical records. We pulled all patient entries from the Mount 
Sinai Electronic Medical Records that contained complete blood count infor-
mation on neutrophils and monocytes (more than 2.3 million entries in 
total). To determine if either propofol or spironolactone were associated with 
a change in cell counts, we identified patient entries that had laboratory values 
measured within 30 d of drug administration versus patient entries that never 
received drug. We tested for group-level differences using the nonparametric 
Wilcoxon rank sum test. The findings were validated using the Electronic 
Medical Records of Columbia University Medical Center, where we employed 
the same criteria for patient selection and performed a Wilcoxon rank sum 
test for group differences.

Visualization. Circos plots created using the circlize R package (version 0.0.7 
https://github.com/jokergoo/circlize). Network diagrams produced using 
Cytoscape65 and SPADE trees generated with CytoSPADE66. All other plots 
created using the R statistical package.

Mice and drug treatment. 6- to 12-week-old female C57Bl/c mice were 
obtained from Jackson Laboratories. Mice received intraperitoneal injections 
three times every 12 h with clioquinol, amantadine (both at 30 mg/kg per 
dose, Sigma Aldrich) or appropriate controls. Dosing level and frequency were 
chosen based on previous experiments using clioquinol in mice45,67 and the 
drug half-life (11–14 h). Clioquinol was dissolved in 8% PEG400/PBS heated 
to 37 °C; amantadine was dissolved in PBS. Before injection, the solutions were 
shaken several times. Mice were euthanized for tissue collection between 2.5 
and 3 h after the last treatment. Blood collection was obtained from the tail. 
For guanfacine treatment, mice received initial injection of 5 mg/kg of drug or 
vehicle control (PBS) on day 1, followed by two (experiment 1) or six (experi-
ments 2–5) intraperitoneal injections at 2 mg/kg every 12 h starting on day 2.  
Mice were euthanized for tissue collection 12 h after the last treatment.  
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All animal procedures were done according to protocols approved by the Mount 
Sinai School of Medicine Institutional Animal Care and Use Committee.

Flow cytometry. Peritoneal cavity cells were collected by washing with cold 
PBS containing 4% FBS. Single-cell suspensions of bone marrow were obtained 
by flushing femurs, followed by filtration through a 100-µm cell strainer (BD 
Biosciences). Red blood cells were lysed for 2 min at room temperature with 
RBC lysis buffer (eBioscience). Samples were stained with the following anti-
bodies (all from eBioscience): allophycocyanin-eFluor780-conjugated CD45  
(30-F11), peridinin chlorophyll protein–cyanine 5.5-conjugated CD11b (M1/70), 
phycoerythrin-conjugated Ly6G (RE6-8C5), phycoerythrin-conjugated  
CD3 (145-2C11), peridinin chlorophyll protein–cyanine 5.5-conjugated CD25 
(PC61.5), fluorescein isothiocyanate-conjugated CD62L (MEL-14), allophy-
cocyanin-conjugated FoxP3 (FJK-16s), eFluor450-conjugated CD4 (GK1.5), 
allophycocyanin-eFluor780-conjugated CD8a (53-6.7), and allophycocyanin-
conjugated CD44 (clone IM7, BD Pharmingen). DAPI was used to label dead 
cells. LSR Fortessa was used for sample acquisition and FlowJo software for 
data analysis.

RNA isolation and quantitative PCR. Total RNA was extracted from pieces 
of lung, liver, spleen and bone marrow cells using QIAzol Lysis Reagent 
(Qiagen) and glycogen blue (Ambion, Life Technologies) according to  
the manufacturer’s instruction. For cDNA synthesis, 2 µg total RNA was reverse-
transcribed for 1 h at 37 °C with an RNA-to-cDNA kit (Applied Biosystems).  
For quantitative PCR, SYBR green qPCR master mix 2× (Fermentas, Thermo 
Scientific) and the following primers were used: mouse Actb forward,  
5′-CTAAGGCCAACCGTGAAAAG-3′, and reverse, 5′-ACCAGAGGCATACA 
GGGACA-3′; mouse Cxcl1 forward, 5′-GTGTTGCCCTCAGGGCC-3′, and  
reverse, 5′-GCCTCGCGACCATTCTTG-3′; mouse Cxcl2 forward, 5′-ACGCCC 
CCAGGACCC-3′, and reverse, 5′-CTTTTTGACCGCCCTTGAGA-3′; mouse  
Cxcl5 forward, 5′-CTCGCCATTCATGCGGAT-3′, and reverse, 5′-CTTCAG 
CTAGATGCTGCGGC-3′; mouse Cxcr2 forward, 5′-CTTTGCCCTGACC 
TTGCCT-3′, and reverse, 5′-GCACAGGGTTGAGCCAAAA-3′; mouse Cxcr4  

forward, 5′-TGGCCTTCATCAGCCTGG-3′, and reverse, 5′-TTGGCCTT 
TGACTGTTGGTG-3′.

Mass cytometry (CyTOF) analysis of mouse spleen. To obtain single-cell 
suspensions, spleens were digested for 20 min at 37 °C in HBSS containing 8% 
FBS and 0.2 mg/ml collagenase IV (Sigma Aldrich). After filtration through a 
100-µm cell strainer, red blood cells were lysed for 2 min at RT with RBC lysis 
buffer. Cells (5 × 106 per sample) were stained for the following surface mark-
ers: 141Pr-Ly6G, 153Eu-PDCA1, 162Dy-Ly6C, 166Er-CD138 (all prepared 
in-house) and 142Nd-CD11c, 147Sm-CD45, 148Nd-CD11b, 149Sm-CD19, 
151Eu-CD25, 152Sm-CD3e, 156Gd-Thy1.2, 160Gd-CD62L, 168Er-CD8, 
169Tm-TCRb, 170Er-NK1.1, 171Yb-CD44, 172Yb-CD4, 174Yb-MHCII and 
176Yb-B220 (all from DVS Sciences). Cisplatin was added for the final 5 min 
to label dead cells and samples were fixed using Fix and Perm buffer (DVS 
Sciences). Immediately before injection, EQ Four Element Calibration Beads 
were added and samples were run on CyTOF 2 mass cytometer (DVS Sciences) 
in three 10-min acquisitions rounds. Data were normalized to EQ Beads and 
files concatenated using DVS software.
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