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adenocarcinoma and diffuse large B-cell lymphoma1–5. The HLA 
locus, located on chromosome 6, is among the most polymorphic 
regions of the human genome, with thousands of documented 
alleles for each gene6. These class I alleles are critical mediators of 
the cytotoxic T-cell response, presenting cellular peptides on the cell 
surface in a form that can be recognized by the T-cell receptor7,8. The 
finding of enhanced somatic mutation rate in HLA genes has strongly 
implicated HLA dysfunction as a possible mechanism of immune 
evasion in the development and progression of certain cancers1–5.

Each individual expresses six major histocompatibility 
complex (MHC) class I alleles, encoded by three genes (HLA-A,  
HLA-B and HLA-C) located on the two homologous copies of 
chromosome 6. Conventional determination of HLA type is 
performed using serology- and/or PCR-based methods that are labor-
intensive and time-consuming9–11. Several protocols have recently 
been proposed for HLA-targeted multiplexed PCR coupled with 
next-generation sequencing, but by design, they provide information 
restricted to HLA alleles, and not the rest of the genome12–16. 
Theoretically, HLA typing information should be directly extractable 
from WES data, an increasingly available and cost-effective approach 
for the comprehensive analysis of genome-wide somatic alterations. 
The human reference genome, however, has a single sequence for 
each HLA gene and would likely misrepresent the true alleles in 
the individual, thereby causing suboptimal alignments. In addition, 
the HLA genes are GC-rich and therefore typically suffer from 
lower sequencing coverage due to lower efficiency in capture and 
amplification, and increased sequencing errors that further reduce 
the alignment rates. Consequently, to accurately detect somatic 
mutations in the HLA genes, one needs to first accurately align all 
reads originating from this region in both the tumor and matched 
normal samples and only then to apply somatic mutation detection 
tools. We also surmised that conventional alignment and mutation 
detection methods, which do not focus dedicated attention on this 
highly polymorphic region, would be prone to errors.

To this end, we developed the algorithm Polysolver (polymorphic 
loci resolver), which enables high-precision HLA typing even while 
using relatively low-coverage WES data, and a subsequent mutation 
detection pipeline that uses the inferred alleles as a basis for high-
fidelity detection of mutations in HLA genes. By analyzing WES 
data from 7,930 cancer patients, we demonstrate high sensitivity 
and specificity of our method in detecting HLA somatic mutations. 
Further characterization suggests a functional impact of these 
mutations on this biologically important and complex locus.

Detection of somatic mutations in human leukocyte 
antigen (HLA) genes using whole-exome sequencing 
(WES) is hampered by the high polymorphism of the 
HLA loci, which prevents alignment of sequencing 
reads to the human reference genome. We describe a 
computational pipeline that enables accurate inference 
of germline alleles of class I HLA-A, B and C genes 
and subsequent detection of mutations in these genes 
using the inferred alleles as a reference. Analysis of 
WES data from 7,930 pairs of tumor and healthy tissue 
from the same patient revealed 298 nonsilent HLA 
mutations in tumors from 266 patients. These 298 
mutations are enriched for likely functional mutations, 
including putative loss-of-function events. Recurrence 
of mutations suggested that these ‘hotspot’ sites were 
positively selected. Cancers with recurrent somatic 
HLA mutations were associated with upregulation of 
signatures of cytolytic activity characteristic of tumor 
infiltration by effector lymphocytes, supporting immune 
evasion by altered HLA function as a contributory 
mechanism in cancer.

Recent large-scale WES studies have revealed the existence and 
relatively high frequency of somatic changes in HLA class I genes 
in head and neck cancer, squamous cell lung cancer, stomach 
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For validation, we applied Polysolver to 
WES data from an independent set of 253 
HapMap samples with known HLA genotypes 
(Supplementary Tables 3 and 4). We 
observed that Polysolver achieved an overall 
mean sensitivity of 97% (83% of samples 
had all allele species correctly identified), 
overall mean precision of 98.8% (93.6% 
samples had no incorrectly identified allele 
species), mean overall accuracy of 97% (83% 
samples had all alleles correctly called) and 
a 100% homozygosity success rate (83 of 83 
homozygous cases correctly identified) in HLA 
typing at the protein coding level. Compared 
to other recently reported algorithms for 
inference of HLA type directly from WES 
data, Polysolver outperformed four of five 
other tools and performed comparably to the 
recently described OptiType tool20 (Fig. 1b, 
Supplementary Table 4 and Supplementary 
Note 3). To accommodate future use of 
Polysolver for samples from individuals 
of unknown ethnic origin, we developed a 
principal components (PC)-based method 
for exome-based ethnicity inference (Online 
Methods and Supplementary Fig. 3), which 
can be used before analysis by Polysolver to 
ensure maximal typing accuracy.

Detection of somatic mutations within 
the HLA region
A standard approach for detection of somatic 
mutations is to first align both tumor and 

normal reads to the reference genome and then scan the genome 
and identify mutational events observed in the tumor but not in the 
matched normal (e.g., as implemented in MuTect21). We reasoned that 
the accurate detection of individual native HLA type using germline 
data by Polysolver could substantially improve alignment of reads (in 
both tumor and normal samples) and hence improve the sensitivity and 
specificity of somatic mutation calling within the HLA region (Fig. 2a). 
In this setting, the inferred allele species for each HLA gene would serve 
as patient-specific reference ‘chromosomes’ against which preselected 
HLA reads from the tumor and germline samples are aligned separately, 
followed by standard mutation calling. We therefore built an analysis 
pipeline to call somatic mutations in the HLA genes that includes 
the following steps: (i) ethnicity detection using the normal sample;  
(ii) inference of HLA type by applying Polysolver on the normal sample 
(although other highly accurate HLA typing tools could also be used); 
(iii) re-alignment of the HLA reads in both tumor and normal samples to 
the inferred HLA alleles while filtering out likely erroneous alignments 
(Online Methods); (iv) application of standard tools to detect somatic 
mutations (MuTect21 and Strelka22) by comparing the re-aligned tumor 
and normal HLA reads.

To test this approach, we initially assembled a data set of 2,545 cases 
of matched tumor and germline DNA spanning 12 tumor types—10 
from The Cancer Genome Atlas project (TCGA), and 2 separate 
genomic studies focusing on CLL and melanoma. Fifty-nine HLA gene 
somatic mutations were previously detected using standard methods 
(Supplementary Note 4) and reported as part of a pan-cancer analysis 
effort23 (Online Methods)17,24. On reanalysis of these cases with our 
Polysolver-based mutation detection pipeline, we detected 36 of 59 

RESULTS
Inference of class I HLA alleles using Polysolver
To develop Polysolver, we put together a training set of data from 
eight chronic lymphocytic leukemia (CLL) patients for which 
WES data as well as conventional PCR-based HLA typing were 
available17 (Supplementary Table 1). We first confirmed the 
expected poor coverage and inverse correlation between GC content 
and coverage in HLA genes in this set (Supplementary Fig. 1). 
We reasoned that coverage at these highly polymorphic regions 
can be substantially improved by ensuring retrieval of true HLA 
reads that failed to align to the canonical reference, followed by 
alignment to a library of all known HLA alleles. These alignments 
could then be used for subsequent computational inference of the 
individual’s HLA type. Thus, Polysolver consists of the following 
steps: (i) improved retrieval and alignment of HLA reads;  
(ii) inference of the HLA alleles using a two-step Bayesian classification 
approach (Fig. 1a, Supplementary Notes 1 and 2, and Supplementary 
Software). In brief, we increased the precision of the alignment by 
first selecting reads from the WES data that potentially originated 
from the HLA region (Supplementary Fig. 2) and aligning them to 
a full-length genomic library of all known HLA alleles based on the 
IMGT (ImMunoGeneTics)/HLA database18 (Online Methods) using 
a precise alignment method (Novoalign), and keeping all best-scoring 
alignments for each read to use in subsequent steps. Inference of the 
two alleles for each HLA gene was based on a Bayesian calculation 
that takes into account the base qualities of aligned reads, observed 
insert sizes, as well as the ethnicity-dependent prior probabilities of 
each allele12,19 (Supplementary Table 2).

Figure 1  Development and validation of Polysolver for inference of MHC class I type. (a) Schematic 
of the Polysolver algorithm. (b) Comparative performance of Polysolver and other previously reported 
algorithms20,41–44 by library size (error bars correspond to s.d.) using the following performance criteria: 
(i) sensitivity, the proportion of all true allele species that are correctly identified by the algorithm; 
(ii) precision, the probability that an inferred allele species is correct; (iii) accuracy, the fraction of 
total number of alleles that are correctly called; and (iv) homozygosity success rate, the fraction of all 
homozygous cases that are correctly inferred.
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(61%) previously reported HLA mutations, as well as 37 novel somatic 
HLA mutations; in total, we detected 73 mutations in 64 of 2,545 cases 
(Fig. 2b,c and Supplementary Tables 5–7). Manual review of all 
HLA mutation events using IGV25 suggested that 9 of 23 mutations 
identified exclusively by TCGA were true events, of which 6 were just 
below the detection limit of our pipeline and were identified once we 
slightly relaxed the read-filtering criteria used before mutation calling 
(Supplementary Table 8 and Supplementary Note 5).

When available, we examined matched RNA-sequencing data and 
sought orthogonal evidence of expression of the somatically mutated 
HLA allele that was detected by WES (indel calls were excluded from 
this analysis owing to low reliability of indel alignment and detection 
by RNA-seq26). A mutation was considered validated if there were at 
least two alternate allele-bearing reads in the RNA-seq data for well-
powered sites (Online Methods). In total, we could evaluate RNA-seq 
data for 49 of 96 mutations, including 10 that were exclusively reported 
by TCGA, 17 detected only by our pipeline and 22 that were detected by 
both. We observed a high rate of RNA-seq-based validation of missense, 
nonsense and splice-site mutations in the set of 22 mutations found in 
common (8 of 8, 8 of 11, and 2 of 3 events, respectively; Fig. 2d and 
Supplementary Table 9). We likewise observed high rates of validation 

for events identified exclusively by the 
Polysolver-based mutation detection pipeline 
(7 of 9, 5 of 6, and 2 of 2 events, respectively). 
By contrast, only 2 of 10 mutations uniquely 
identified by TCGA were validated using RNA-
seq.

We further performed experimental 
validation of inferred mutation calls through 
direct targeted sequencing of HLA-A and 
HLA-B alleles of 18 TCGA samples identified 
as bearing HLA mutations for which DNA 
material was available (Online Methods)27. 
Six of these 18 samples did not have adequate 
coverage at the site of mutation and were 
removed from the analysis owing to lack 
of sufficient power for mutation detection 
(Online Methods). Of the remaining 12 
mutations, this analysis confirmed all 11 
of 11 HLA mutations that were inferred by 
the Polysolver-based mutation detection 
pipeline (5 identified by TCGA also; 6 
identified exclusively by Polysolver), whereas 
the sole mutation identified exclusively 
by TCGA was not validated (Fig. 2d and 
Supplementary Table 10). Altogether, these 
results demonstrate that the Polysolver-based 
approach is both a sensitive and specific 
somatic mutation–detection strategy within 
the highly polymorphic HLA loci.

Patterns of somatic HLA mutation across 
tumor types
We extended our analysis of Polysolver-based 
mutation detection to a total of 7,930 TCGA 
tumor-normal pairs (including the original 
collection of 2,545 and 5,385 additional 
cases). In total, we detected 298 somatic HLA 
mutations in 266 of 7,930 (3.3%) individuals 
(Supplementary Tables 11 and 12). The 
median allele fraction across somatic changes 

was 33% (interquartile range: 16–58%), suggesting that most of these 
mutations are heterozygous (Supplementary Fig. 4a).

Among the cancer types, we observed differences in frequency, 
localization and types of somatic HLA mutations (Fig. 3). In addition to 
finding HLA mutations occurring significantly in head and neck (HLA-A,  
HLA-B), lung squamous (HLA-A) and stomach (HLA-B) cancer as 
previously reported, we further identified HLA-A (FDR, q = 2.3 × 10-8) 
and HLA-B (FDR, q = 3.9 × 10-7) to be significantly mutated in colon 
adenocarcinoma. By contrast, CLL (n = 128) and liver cancer (n = 
202) entirely lacked HLA mutations, and only single mutations were 
detected in glioblastoma (n = 390) and thyroid cancer (n = 486). 214 of 
298 HLA mutations (71.8%) fell in 64 recurrent positions (i.e., amino 
acids that were mutated in at least two instances). The recurrent sites 
were distributed across the HLA gene (median of 2 mutated cases/
recurrent site (range 2–24), (Fig. 3, bottom, Supplementary Table 13 
and Supplementary Fig. 4b,c).

Somatic class I HLA mutations are likely positively selected
Alterations highly likely to have a functional effect, including loss-
of-function events (nonsense, frameshift indels, splice site), were 
significantly enriched in HLA mutations compared to non-HLA 

Figure 2  Polysolver for the detection of somatic mutations in MHC class I alleles across cancers.  
(a) Schema for detection of somatic changes in HLA genes using Polysolver. Mutation detection 
algorithms MuTect21 and Strelka22 were incorporated for calling point mutations and indels, respectively, 
following MHC class I typing of the germline by Polysolver. (b) Comparison of somatic HLA mutations 
identified by TCGA (yellow) across cancers using standard approaches to those identified by Polysolver 
(black) (n = 2,545). Green: mutations found in common between the two data sets. (c) Number of HLA 
mutations and the percentage of samples bearing HLA mutations per cancer type identified by TCGA 
and Polysolver. (d) Validation of mutations using RNA-seq and long-read sequencing. RNA-seq–based 
validation was restricted to 49 samples with HLA point mutations (missense, nonsense, non-stop, splice 
site) identified by exome analysis and with available RNA-seq data. Long-read sequencing was performed 
on HLA alleles from 18 samples with available DNA material (Online Methods)27.
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mutations (Fig. 4a, chi-squared test P < 2.2 ×  
10-16). We also observed that whereas 
loss-of-function mutations occurred in all 
functional domains of the HLA molecule, 
they demonstrated a strong preference for 
the N-terminal end in the leader peptide 
sequence (P = 0.0038), which would likely 
result in a completely nonfunctional protein 
(Supplementary Fig. 4d). The highest 
frequency of mutations localized to exon 4 
(118 mutations, 39.6%), which encodes the 
a3 domain of the HLA protein that binds to 
the CD8 co-receptor of T cells28 (Fig. 4b). 
Abrogation of this function could lead to a 
loss of T-cell recognition and thereby a loss 
of immune reactivity. The second-highest 
frequency of mutations occurred in exon 3 
(56 mutations, 18.8%) followed by exon 2 
(49 mutations, 16.4%), which encode the a1 
and a2 peptide binding domains of the HLA 
molecule, respectively, which conventionally 
bind 9- and 10-mer peptides for antigen 
presentation29.

Analysis of the position of the mutated 
residues within exons 2 and 3 in relationship 
to their predicted interaction with binding 
peptide29 further strongly suggests alteration 
of immune function by these somatic HLA 
mutations (Supplementary Table 14). The 
two major anchor grooves in the HLA molecule 
bind to positions 2 and 9, respectively, of the 
peptide, and a mutation in either groove 
would be expected to profoundly affect the 
biochemical stability of the MHC-peptide 
complex29. A secondary anchor groove that 
interacts primarily with the sixth amino acid 
of the peptide lies between the two primary 
anchor grooves30. Overall, 28.6% of mutations 
(30 of 105) in the peptide binding domains 
were in residues that come in contact with 
the peptide and 80% (24 of 30) of these were 
in positions that comprised one of the two 
primary anchor grooves (Fig. 4c).

We hypothesized that loss-of-function 
HLA mutations would more likely arise in the 
presence of selective pressure imposed by the 
host immune response against the tumor. A 
growing body of studies has shown that higher 
mutational burdens in cancers give rise to a 
higher load of mutation-derived immunogenic 
epitopes and that immune responses against 
these are associated with clinical benefit31. 
These immune responses are presumably 
driven by the presentation of tumor-derived 
epitopes by antigen-presenting cells to stimulate 
effector lymphocyte responses. Consistent 
with the idea that a tumor would evolve in a 
manner to escape recognition and destruction 
by tumor-directed T or natural killer (NK) 
cells, we detected an association between the 
presence of HLA somatic mutations and tumor 

Figure 3  Distribution of HLA mutations across cancers and across functional domains and tumor types. 
Top, distribution of potential loss-of-function events, including out-of-frame and nonsense mutations. 
The histogram summarizes the number of events identified at each position. Central panel, pattern of 
mutations detected in each tumor type. Bottom, recurrent events; recurrent positions (with disease, 
allele group) with frequency ≥5 cases/recurrent site are shown. Bladder (BLCA), breast (BRCA), cervical  
squamous (CESC), colon adenocarcinoma (COAD), head and neck squamous (HNSC), lower-grade 
glioma (LGG), lung adenocarcinoma (LUAD), lung squamous (LUSC), prostate adenocarcinoma (PRAD), 
rectum adenocarcinoma (READ), melanoma (SKCM), stomach adenocarcinoma  (STAD), thyroid 
(THCA), endometrial (UCEC).
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expression signatures of effector lymphocyte infiltration, as recently 
defined32 (Supplementary Table 15 and Fig. 4d). Although putative 
loss-of-function somatic mutations in tumor HLA genes could lead to 
a decrease in the presentation of immunogenic epitopes by the tumor 
cell and evasion of immunologic targeting, these same mutations would 
not affect the ability of nontumor, host antigen-presenting cells to ingest 
and present tumor antigens to T cells, thereby stimulating immune 
infiltration. To further examine this idea, we analyzed the expression 
of 18,000 genes in matched RNA-seq data from 4,512 samples across 
11 tumor types and found the strongest associations in 6 of 11 cancer 
types (stomach, endometrial, cervical, head and neck, colorectal and 
glioma), suggesting that reduced MHC class I activity may be particularly 
important for driving immune escape in these tumor types. From this 
unbiased analysis, the most significantly enriched genes were interferon 
gamma (IFNG), T-cell attractive chemokines (CXCL9, CXCL10, 
CXCL11), lytic molecules (GZMA, GZMH, PRF1, GNLY), as well as 
the “Cytolytic Activity” metagene (analyzed previously as a measure of 
anti-tumor T/NK cell activity32). These results suggest that acquisition 
of HLA mutations without abrogation of expression may provide a 
complementary immunosurveillance escape mechanism in which 
potential destruction of the tumor by T cells and NK cells is precluded.

DISCUSSION
Immune evasion is a critical process in tumor biology and is enabled 
by several mechanisms including immune-editing33, downregulation 

of HLA expression34, secretion of immunosuppressive mediators35 
and expression of proteins that modulate immune checkpoints36. 
Most recently, somatic mutation of HLA genes was revealed to be 
a significantly frequent process in some tumor types4. Improved 
sensitivity and accuracy of somatic HLA mutation detection could better 
characterize this already strongly implicated mechanism of immune 
evasion across cancers. We therefore created Polysolver, a model-based 
algorithm for accurate inference of HLA typing information from 
germline exome-capture data, which enables more sensitive and specific 
detection of somatic HLA mutations compared to standard techniques 
reliant on alignment to the canonical reference genome.

We have demonstrated that Polysolver infers HLA-type information 
with 97% sensitivity and 98% precision from exome-capture sequencing 
data and is among the best-performing tools for the analysis of HLA loci 
from WES data. Indeed, different typing tools, or a combination thereof, 
may be used for optimizing different aspects of HLA mutation detection 
performance, for example, a consensus approach that only uses allele 
species commonly identified by multiple tools as a basis for mutation 
detection would favor increased specificity at the cost of sensitivity. 
The better performance of HLA mutation detection was assessed to be 
primarily due to use of inferred alleles as reference and employment of 
stringent criteria for filtering aligned reads before mutation calling. We 
estimate an increase in sensitivity from 58.8% to 94.1% and specificity 
from 20% to 53.3% over standard methods, based on validation of 
point mutations in RNA-seq data. An expected limitation of Polysolver 

Figure 4  Distribution of MHC class I mutations 
and evidence of positive functional selection.  
(a) Comparison of spectrum of mutations in non-
HLA genes and HLA genes. The ratio of number 
of mutations of a particular type to the number of 
silent mutations is compared between the non-
HLA and HLA genes for all mutation types (chi-
square test, P < 2.2 × 10-16). Ins., insertion;  
del., deletion. (b) Distribution of HLA mutations 
across exons. (c) Mutations in HLA positions that 
are in actual physical contact with the peptide 
(contact residues). Left panel, the relative 
orientation of a 9-mer peptide with respect 
to the HLA and T-cell molecules. Positions 2 
and 9 constitute the primary anchors, whereas 
position 6 forms the secondary anchor with HLA. 
The remaining position interacts with the T-cell 
molecule. Right panel, the nine amino acids of 
the peptide and their corresponding HLA contact 
residues are indicated along the rows (green, 
HLA-interacting anchor positions; blue, T-cell-
interacting positions). The histogram depicts 
the frequency of observed HLA mutations in 
contact residues corresponding to each peptide 
position29. (d) Killer lymphocyte effector genes 
are more highly expressed in tumors exhibiting 
MHC class I mutation. Unbiased statistical 
analysis was employed to find genes more highly 
expressed in tumors harboring a mutation in an 
MHC class I allele. Heatmap displays color-coded 
expression ratio of medians (HLA-mutant vs. 
nonmutant samples) for genes (columns) in each 
cancer type (rows), excluding cancer types with 
fewer than three instances of HLA mutation in 
the cohort. *P < 0.05; **P < 0.0005 indicates 
the significance of the association for the given 
gene in the given cancer type according to one-sided Wilcoxon rank-sum test (null hypothesis: expression is not greater in the mutants). Cytolytic activity 
(geometric mean of GZMA and PRF1 expression) is included as though a gene. The depicted genes are those for which expression in MHC class I–mutated 
tumors was most significantly elevated across cancers (unadjusted P < 10-10 combined by Fisher’s method, Supplementary Table 15). 
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METHODS
Methods and any associated references are available in the online version 
of the paper.

Accession codes. dbGaP: phs000178. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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is its restriction to identification of known alleles, but future versions 
may be augmented by an assembly-driven module that would enable 
discovery of novel HLA alleles, and by representing a wider range of 
ethnic groups. Polysolver and other available HLA typing tools that can 
be used with WES are also not yet suitable for clinical use where much 
higher accuracy (>99.9%) is required. However, the Polysolver-based 
mutation detection pipeline can still be used effectively for detecting 
somatic changes in HLA genes once experimentally determined HLA 
typing information is available.

In this study, we performed a comprehensive characterization of HLA 
mutations in 7,930 samples across 20 different tumor types. We have 
shown that, in comparison to previous studies, the HLA mutational 
spectrum elucidated by our analysis has significantly reduced false 
positives and detects additional somatic mutations. Several biologic 
insights emerged from our analysis. First, we identified colon 
adenocarcinoma to be significantly affected by somatic mutation in class 
I HLA genes in addition to head and neck, lung squamous and stomach 
cancer, thus further supporting HLA mutation as a common oncogenic 
mechanism. In contrast, other cancers such as glioblastoma, ovarian 
cancer and CLL largely lacked mutations in HLA genes. Second, several 
characteristics of the identified nonsynonymous mutations suggest that 
they functionally affect antigen presentation. We identified 29 sites 
across the HLA genes that were recurrently mutated in at least three 
cases, and 35 sites by two cases suggesting positive selection at these 
positions. We further noted a significant enrichment in loss-​of-function 
events in the HLA genes, such as frameshifting indels, nonsense and 
splice-site mutations. These events would be expected to abrogate HLA 
class I surface expression on tumors37–39, thereby affecting antigen 
presentation to immune cells. We determined that the majority of the 
detected mutations map to regions critical for antigen presentation. 
More than a third of the mutations (39.6%) were in exon 4 that encodes 
the MHC class I allele a3 domain, which binds to the CD8 co-receptor 
on T cells28. Mutations in this domain have been previously shown to 
abrogate binding to CD8 (ref. 40). Exons 2 and 3 harbored 35.2% of 
the mutations—these exons encode the surfaces that present peptides 
to immune cells. We found evidence that exon 2 and 3 HLA mutations 
preferentially localized to residues critical for anchoring peptide to the 
MHC binding grooves, and would be expected to interfere with the 
fundamental process of antigen presentation29,30.

Finally, we observed a strong association between effector lymphocyte 
gene expression signatures and HLA mutations, which is consistent with 
the hypothesis that somatic changes in these genes are a plausible immune 
escape mechanism, which arise in response to increased cytolytic activity 
in several tumor types. However, additional experiments are required to 
better understand this mechanism.

Improvements in massively parallel sequencing technologies are 
now enabling increased coverage and longer read lengths, which 
should further help Polysolver in resolving somatic changes in 
HLA regions. Further efforts will be focused on extending the 
methodology to other data modalities including RNA-seq and whole 
genome sequencing. In addition to enabling better detection of HLA 
mutations, accurate HLA typing by Polysolver can also be used to study 
germline associations of HLA alleles in diseases, such as autoimmune 
diseases and cancer. It could be used prospectively for preliminary 
screening for matches for allogeneic organ transplantation. Finally, 
as described here, Polysolver can be potentially extended to extract 
sequence and mutation information from other polymorphic regions 
in the genome such as MHC class II, nonclassical MHC alleles, TAP1 
and TAP2 genes, and MIC-A and MIC-B ligands, and hence is a 
generally applicable analysis framework to address these otherwise 
challenging loci.
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ONLINE METHODS
Polysolver is freely available for noncommercial use at http://www.
broadinstitute.org/cancer/cga/polysolver and in Supplementary Software.

WES data. All samples were obtained under Institutional Review Board 
approval and with documented informed consent. A complete list of TCGA 
samples is given in Supplementary Table 11. Mutational spectra of CLL17,45 
and melanoma24 have previously been reported, whereas mutation lists for 
lung squamous carcinoma (LUSC), lung adenocarcinoma (LUAD), blad-
der (BLCA), head and neck (HNSC), colon (COAD) and rectum (READ), 
glioblastoma (GBM), ovarian (OV), uterine corpus endometrial carcinoma 
(UCEC) and breast (BRCA) were obtained from the Sage Bionetworks’ Synapse 
resource (http://www.synapse.org/#!SYNAPSE:syn1729383). For a subset of 
CLL patients (N = 8), HLA typing was performed by molecular typing (Tissue 
Typing Laboratory, Brigham and Women’s Hospital, Boston), and these cases 
were used as a training set for the Polysolver algorithm (Supplementary 
Table 1). The validation set comprised 253 samples from 183 distinct indi-
viduals (47 Caucasian, 50 Blacks, 41 Chinese and 45 Japanese individuals) that 
had both exome data and experimentally determined HLA type information12 
(http://www.1000genomes.org/).

Polysolver allele database creation. To maximally retrieve true HLA reads, 
we constructed a full-length genomic reference library of known HLA alleles 
(6,597 unique entries) based on the Multiple Sequence Alignment (MSA) files 
provided in the IMGT database (v3.10; http://www.ebi.ac.uk/ipd/imgt/hla/), 
similar to the approach described in Erlich et al.12. We first used the cDNA file 
to impute exons in an incompletely sequenced allele by using a reference allele 
that had protein-level identity with the allele in question, as was evident by 
concordance of 4-digit nomenclature. If no such reference allele was available, 
we set as reference an allele that derived from the same allele group, as was 
evident by concordance of 2-digit nomenclature. In cases where there were 
multiple such possibilities for choosing the reference allele, we chose the first 
listed allele in the MSA. A similar approach was used to impute the missing 
components of the sequences listed in genomic (gDNA) MSA file. Finally the 
full-length genomic sequence of each allele was imputed by assembling exons 
from the cDNA imputation step and introns from the gDNA imputation.

Ethnicity inference and prior probability estimation. 4-digit allele frequen-
cies for different ethnicities were calculated by taking a sample-size weighted 
average of all relevant population studies in the Allele Frequency Net Database 
(http://www.allelefrequencies.net/).

A rapid principal components analysis (PCA)-based method was 
developed to infer ethnicity for samples of unknown racial origin (Kiezun 
et al., unpublished data). Exome data for samples of known (self-described) 
ethnicity from the 1000 Genomes and HapMap projects (n = 1,398, with 
911 Caucasians, 375 Blacks, 54 Asians and 58 South Asians) was genotyped 
at a predefined set of 5,845 loci chosen based on considerations related to 
known linkage disequilibrium between different loci, representation on 
population genotyping platforms and consistency between genome releases46. 
A PCA revealed distinct segregation of Caucasian, Black, Asian and South 
Asian samples in the 2-dimensional space defined by the first two principal 
components. Any new sample of unknown ethnicity can now be projected 
in this space and its Euclidean distance from the clusters centroids can be 
computed. Ethnicity is inferred based on the cluster of minimal distance from 
the sample projection.

Allele inference. The posterior probability calculations for alleles correspond-
ing to each HLA gene (A, B or C) are performed separately as described below:
Let

NA ≡ # alleles corresponding to the HLA gene
N ≡ # reads aligning to at least one allele
Nm ≡ # reads aligning to allele am
NT ≡ # reads in the sequencing run
fm ≡ population-based prior probability of allele m
rk1 ≡ first read of read pair rk
rk2 ≡ second read of read pair rk
dk ≡ insert length of read pair rk

lk1 ≡ length of first read of read pair rk
lk2 ≡ length of second read of read pair rk
qi ≡ Phred-like quality of sequenced base i
ei ≡ probability that the sequenced base i is an error

The quality scores of the alignment were used to build a model for the 
sequencing process. Let us say that a given read pair rk does in fact derive from an 
allele am and their sequence relationship allowing for miscalls in the sequencing 
process is accurately captured in the alignment. Let YAi, YCi, YGi and YTi denote 
random variables corresponding to observing bases A, C, G and T respectively 
at position i in read pair rk in its alignment to allele am. Then

YAi, YCi, YGi, YTi  ~ Multinomial(n = 1; αAi , αCi, αGi, αTi)
where

αBi = 1 – ei    if reference base at position i in am is B 

= ei/3  otherwise

Let D denote a random variable for the observed insert length of a paired read 
in the sequencing run based on alignment to the complete genome. For a given 
read pair rk, the empirical insert size distribution can be used to estimate the 
probability of observing the insert length dk as

I (dl =dk)Σ
P (D = dk) =

NT

NT
l=1

Assuming positional independence of quality scores, and independence of 
generated reads and their insert sizes, the probability of observing rk given allele 
am is then

lk1

∏ •  P (D = dk)P(rk|am) = if rk aligns to am 

otherwisesk

iα jα
lk2

∏
i=1 j=1

where sk corresponds to the lowest theoretical probability achievable for read 
pair r’k with perfect base qualities and segment lengths equal to those of rk. Since 
93 is the maximum achievable base quality under Illumina 1.8+ format, sk is 
computed as 10–9.3

3
sk = (lk1 + lk2)  •  log ≈ –23 • (lk1 + lk2)

The posterior probability of allele am using all reads that align to it is given by

P (am| r1, r2 ,..., rN) =
P (rk |am) •  fm∏

∏

N
k=1

P (rk )
N
k=1

Log transformation of the above equation yields

Note that the terms N•sk and ∑ log P(rk)
N
k=1  are constants for all alleles and 

can be ignored. The first allele is inferred as the one that maximizes the posterior 
probability. aw = argmax Lm

am

To infer the second allele we had to handle the fact that different alleles are very 
similar to each other, including the winning allele. Therefore, we weight reads 
aligning to multiple alleles by applying a heuristic strategy. For a given allele am, the 
likelihood lmk of a read rk that also mapped to the winning allele aw with likelihood 
lwk was weighted by a factor equal to lmk/(lmk + lwk). Consequently, reads mapping 
exclusively to am with respect to aw were assigned a weight of 1. The read insert size 
and allele prior probability components were preserved from the first allele inference 
step. The second winner at each locus was identified as the allele with the maximal  
reevaluated score.

∑ ∑ ∑ ∑ ∑Lm= log αi + log αj + log P(D = dk) + (N – Nm)sk + log fm –

lk1

k=1 i=1 k=1 k=1j=1

Nm lk2Nm

∑
k=1

NNm

log P(rk)
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Pre- and post-processing steps for HLA mutation detection. Prior to detec-
tion of somatic changes using MuTect and Strelka by comparison of tumor 
and normal HLA reads aligned to Polysolver-inferred HLA alleles, the fol-
lowing changes and filters were implemented: (i) NotPrimaryAlignment bit 
flag was turned off from all alignments as several reads mapped to multiple 
alleles; (ii) mapping quality was changed to a nonzero value (=70) for all reads; 
(iii) alignments where both mates did not align to the same reference allele 
were discarded; and (iv) alignments where at least one mate had more than 
one mutation, insertion or deletion event compared to the reference allele 
were discarded. Soft-clipping of the reads was not allowed during the align-
ment. Alleles with multiple detected somatic changes were removed from the 
analysis. In cases where both inferred alleles were identical in the region of 
detected somatic mutation, the mutation was assigned to the more common 
allele in the population. All somatic events were visualized using IGV (MuTect: 
‘KEEP’ entries in call_stats file, Strelka: All entries in all.somatic.indels.vcf file) 
and the ones that passed manual review were further annotated for the gene 
compartment (intron, exon, splice site) and protein change. Splice sites were 
defined as the set of splice consensus sequence positions that had a bit score 
of at least 1 in either the human major/U2 or human minor/U12 introns at the 
exon/intron boundaries (9 positions at the 5ʹ splice donor end of the intron 
including the ultimate base in the upstream exon, and 2 positions at the 3ʹ 
splice acceptor end of the intron)47.

Validation of somatic HLA mutations by RNA-seq evaluation. The 
MutationValidator tool (data not shown) was used for orthogonal confirmation 
of mutations in RNA-seq data. A mutation was considered validated in RNA-seq 
if there were at least two reads supporting the mutation. In brief, to determine the 
power, we first model the distribution of allelic fraction of the mutation based on 
the exome data as a Beta(a+1, r+1) distribution, where a is the number of reads 
bearing the alternate allele and r is the number of reads bearing the reference 
allele at the site of mutation. Then, given the total number of reads aligning at 
the position in the RNA-seq data (N), power was calculated as the probability 
that we would detect at least two reads bearing the alternate allele in the RNA-seq 
data (assuming the mutation has the same underlying allele fraction as the DNA) 
using the Beta-binomial distribution Beta-Binom(N,a+1,r+1), that is,

∑Power = where( ) B(k + a + 1, n – k + r + 1)
B(a + 1, r + 1)

B(x, y) = (x – 1)! (y – 1)! 
(x + y – 1)! 

k=2

N
N
k

A threshold of 80% power was used to consider a site to be powered to detect the 
mutation in the RNA-seq data. Sites that had less than 80% power were removed 
from the analysis.

Standard HLA typing. Standard HLA typing was performed at the Brigham and 
Women’s Hospital Tissue Typing Laboratory using a combination of sequence-
specific oligonucleotide probe (SSO) and sequence specific primer (SSP) tech-
niques. Genomic DNA samples were initially typed using locus-specific LabType 
SSO kits (One Lambda Inc.) and analyzed using a Luminex 200. Loci for which 
there were more than one common well-documented (CWD) allele were subse-
quently resolved by PCR-SSP kits (One Lambda Inc. and Life Technologies) and 
analyzed using gel electrophoresis.

Validation of inferred somatic HLA mutations by targeted long sequencing 
of HLA-A and –B. HLA-A and HLA-B amplification of TCGA samples. HLA 
locus-specific amplification for HLA-A and HLA-B sequences were performed 
separately using HGSgo-AmpX kits from GenDX (Utrecht, Netherlands). Briefly, 
for each sample, 100 ng of genomic DNA was mixed with 1 µl of AmpX primer 
(GenDX), 1.25 µl dNTP mix (Qiagen), 2.5 µl LongRange PCR Buffer (Qiagen), 
0.4 Symbol l LongRange PCR Enzyme (Qiagen) and nuclease-free water was 
added to a final volume of 25 µl per reaction. Samples were then placed in a 
thermal cycler and PCR was performed using the following conditions: initial 
denaturation at 95 °C for 3 min, followed by 35 cycles of 95 °C for 15 s, 65 °C for 
30 s and 68 °C for 6 min, followed by a final incubation at 68 °C for 10 min. All 
PCR reactions were then purified using Agencourt AMPureXP beads, according 

to the manufacturer’s protocol (Beckman Coulter). Following AMPureXP puri-
fication, the concentrations of the amplification products (~3.1–3.4 kb) were 
confirmed by Quant-iT (Life Technologies), and the sizes were confirmed using 
an Agilent Bioanalyzer DNA 7500 kit.

Library construction and long sequencing. SMRTbell DNA template libraries 
were prepared from the HLA-A and HLA-B amplicons, according to the 
manufacturer’s suggested protocol (5 kb Template Preparation and Sequencing, 
Pacific Biosciences). Briefly, equimolar pools of HLA-A and HLA-B amplicons 
were prepared for each sample. Pooled amplicons were then end repaired and 
ligated to barcoded SMRTbell adapters. Following the addition of barcoded 
SMRTbell adapters, all samples were pooled and exonuclease treated according 
to the manufacturer’s suggested protocol. Pooled, barcoded libraries were then 
purified using AMPure PB beads (Pacific Biosciences) and quantified using 
an Agilent Bioanalyzer DNA 7500 kit. Pooled samples were sequenced in 
SMRTCells with a Pacific Biosciences RSII instrument using the P6 DNA/
Polymerase Binding Kit in conjunction with the DNA Sequencing Reagent 
4.0. Barcoded subreads were analyzed using the SMRT Analysis (version 2.3.0) 
Long Amplicon Analysis (LAA) protocol.

Analysis. We confirmed the accuracy of the Pacific Biosciences-based long 
sequencing approach through testing six samples from normal volunteers with 
known HLA typing (performed at BWH Tissue Typing laboratory based on a 
combination of sequence-specific SSO and SSP techniques, see above), wherein 
we observed 100% concordance between the two approaches. The LAA phased 
consensus fastq sequences and HLA typing for each sample were derived using a 
set of publicly available analysis tools (https://github.com/bnbowman/HlaTools). 
In total, data were generated from 28 samples corresponding to 18 different 
mutations (10 tumor/normal pairs and 8 tumor-only cases). The median number 
of subreads generated per sample was 20,120 (range: 7,464–40,990). For validation 
of Polysolver-predicted mutations, the subreads from the corresponding samples 
were split into contiguous 76-mers, aligned to alleles comprising the inferred 
HLA type for the individual using Novoalign (http://www.novocraft.com/) and 
visualized using IGV. Only reads that had no more than one somatic event of 
the same type (mismatch, insertion, deletion) as the mutation being assessed 
were retained. After filtering, the median number of 76-mer reads mapping to 
the allele predicted to have the mutation was 1,046 (range: 9–3,860). Power was 
calculated using the MutationValidator tool as described above, and a threshold 
of 80% power was used in evaluating the mutations.

Identifying changes in gene expression associated with nonsilent MHC 
class I mutation. Gene expression data were obtained and processed as 
described32. In short, “Level_3” gene-level data were obtained from GDAC 
Firehose (http://gdac.broadinstitute.org/). Read counts were tallied per gene 
symbol and divided by the gene symbol’s maximum transcript length (as 
defined by UCSC Genome Browser’s table “knownIsoforms” (hg19 version)). 
For each sample, these values were rescaled to sum to a total of one million, 
such that expression estimates may be interpreted as Transcripts Per Million 
transcripts (TPM).

For each gene (of ~18,000 quantified pan-cancer), a one-sided Wilcoxon 
rank-sum test was applied to determine whether the mutants (those samples 
nonsilently mutated in any of the six HLA alleles) demonstrated significantly 
higher expression than the nonmutants. In performing this rank-based test, 
random tie breaks were applied when two samples exhibited identical gene 
expression. Note that in addition to the 18,000 genes tested, “cytolytic activity” 
(defined previously as the geometric mean of GZMA and PRF1 expression32) 
was also included. This process was executed separately per tumor type and 
excluded tumor types for which the count of mutated samples with available 
expression data was fewer than three (which excluded glioblastoma, CLL, 
kidney clear cell cancer, liver cancer, ovarian cancer, prostate cancer, melanoma 
and thyroid cancer). This resulted in a matrix of P-values (11 tumor types by 
18,000 genes). Fisher’s method was applied to each gene to assess its overall 
significance across the 11 tumor types. Per-cancer and pan-cancer P-values 
are presented (Supplementary Table 15). Effect sizes (estimated by taking 
the ratio of median expression in the mutants to median expression in the 
nonmutants) for top genes (defined as those with unadjusted P < 10-10) are 
depicted in the form of a heatmap (Fig. 4d). For this heatmap, row and column 
orderings reflect hierarchical clustering (on the basis of the effect size variable), 
though dendrograms are not shown.
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This entire process was repeated, but we reversed the directionality of the 
one-sided Wilcoxon rank-sum tests in order to identify genes with lower 
expression in HLA mutants. Per-cancer and pan-cancer P-values for this 
analysis are presented in Supplementary Table 16, and the effect size heatmap 
appears as Supplementary Figure 5.
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Erratum: Comprehensive analysis of cancer-associated somatic mutations in 
class I HLA genes
Sachet A Shukla, Michael S Rooney, Mohini Rajasagi, Grace Tiao, Philip M Dixon, Michael S Lawrence, Jonathan Stevens, William J Lane, 
Jamie L Dellagatta, Scott Steelman, Carrie Sougnez, Kristian Cibulskis, Adam Kiezun, Nir Hacohen, Vladimir Brusic, Catherine J Wu & 
Gad Getz
Nat. Biotechnol. doi:10.1038/nbt.3344; corrected online 1 October 2015

In the version of this article initially published online, there were errors in three equations in the first page of Online Methods, in the section “Allele 
inference”: “= ei/3 otherwise” should have been on a separate line; the equation beginning with “P (D = dk)” was missing an equal sign immediately 
after this expression; and in the equation starting with Lm, the fifth summation sign was missing “k = 1”. On p. 3, under the first subheading on the 
right-hand side, “ovarian cancer (n = 432)” should have read “thyroid cancer (n = 486).” In addition, the citation for Supplementary Software was 
missing. The errors and omission have been corrected for the print, PDF and HTML versions of this article.
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