Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optogenetics for in vivo cardiac pacing and resynchronization therapies

Abstract

Abnormalities in the specialized cardiac conduction system may result in slow heart rate or mechanical dyssynchrony. Here we apply optogenetics, widely used to modulate neuronal excitability1,2,3,4, for cardiac pacing and resynchronization. We used adeno-associated virus (AAV) 9 to express the Channelrhodopsin-2 (ChR2) transgene at one or more ventricular sites in rats. This allowed optogenetic pacing of the hearts at different beating frequencies with blue-light illumination both in vivo and in isolated perfused hearts. Optical mapping confirmed that the source of the new pacemaker activity was the site of ChR2 transgene delivery. Notably, diffuse illumination of hearts where the ChR2 transgene was delivered to several ventricular sites resulted in electrical synchronization and significant shortening of ventricular activation times. These findings highlight the unique potential of optogenetics for cardiac pacing and resynchronization therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic pacing of the rat heart in vivo.
Figure 2: Optogenetic pacing in the isolated rat heart.
Figure 3: Dual-site and multisite optogenetic pacing in the isolated rat heart setting.

Similar content being viewed by others

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond- timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  3. Kravitz, A.V. & Kreitzer, A.C. Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol. 21, 433–439 (2011).

    Article  CAS  Google Scholar 

  4. Szobota, S. & Isacoff, E.Y. Optical control of neuronal activity. Annu. Rev. Biophys. 39, 329–348 (2010).

    Article  CAS  Google Scholar 

  5. Bristow, M.R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  Google Scholar 

  6. Cho, H.C. & Marban, E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ. Res. 106, 674–685 (2010).

    Article  CAS  Google Scholar 

  7. Rosen, M.R., Robinson, R.B., Brink, P.R. & Cohen, I.S. The road to biological pacing. Nat. Rev. Cardiol. 8, 656–666 (2011).

    Article  Google Scholar 

  8. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  9. Jia, Z. et al. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol. 4, 753–760 (2011).

    Article  Google Scholar 

  10. Nussinovitch, U., Shinnawi, R. & Gepstein, L. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc. Res. 102, 176–187 (2014).

    Article  CAS  Google Scholar 

  11. Arrenberg, A.B., Stainier, D.Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  CAS  Google Scholar 

  12. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  Google Scholar 

  13. Boyle, P.M., Williams, J.C., Ambrosi, C.M., Entcheva, E. & Trayanova, N.A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 4, 2370 (2013).

    Article  Google Scholar 

  14. Inagaki, K. et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol. Ther. 14, 45–53 (2006).

    Article  CAS  Google Scholar 

  15. Wilkoff, B.L. et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. J. Am. Med. Assoc. 288, 3115–3123 (2002).

    Article  Google Scholar 

  16. Miake, J., Marban, E. & Nuss, H.B. Biological pacemaker created by gene transfer. Nature 419, 132–133 (2002).

    Article  CAS  Google Scholar 

  17. Plotnikov, A.N. et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109, 506–512 (2004).

    Article  Google Scholar 

  18. Kapoor, N., Liang, W., Marban, E. & Cho, H.C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2012).

    Article  Google Scholar 

  19. Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

    Article  CAS  Google Scholar 

  20. Plotnikov, A.N. et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116, 706–713 (2007).

    Article  Google Scholar 

  21. Potapova, I. et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ. Res. 94, 952–959 (2004).

    Article  CAS  Google Scholar 

  22. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. ReaChR: a red- shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the NOFAR project from the Office of the Chief Scientist (OCS) in the Israel Ministry of Economy, by the Israel Science Foundation (1609/14) and by the Nancy & Stephen Grand Philanthropic Fund. We thank C. Giridish for his technical help with the light sources. Also, we wish to thank I. Huber (from the Rappaport Faculty of Medicine, Technion), E. Suss-Toby, M. Holdengreber Shahar and L. Leiba (Imaging center at the Faculty of Medicine, Technion) and S. Ben Eliezer (Pathology Department, Rambam Health Center, Haifa, Israel) for their help with histological slide processing and their assistance with results analysis.

Author information

Authors and Affiliations

Authors

Contributions

U.N. and L.G. designed the experiments, U.N. performed the experiments and analyzed the results, U.N. and L.G. wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lior Gepstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nussinovitch, U., Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol 33, 750–754 (2015). https://doi.org/10.1038/nbt.3268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing