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Large-scale imputation of epigenomic datasets for
systematic annotation of diverse human tissues

Jason Ernst!~> & Manolis Kellis®’

With hundreds of epigenomic maps, the opportunity arises to
exploit the correlated nature of epigenetic signals, across both
marks and samples, for large-scale prediction of additional
datasets. Here, we undertake epigenome imputation by
leveraging such correlations through an ensemble of regression
trees. We impute 4,315 high-resolution signal maps, of

which 26% are also experimentally observed. Imputed signal
tracks show overall similarity to observed signals and surpass
experimental datasets in consistency, recovery of gene
annotations and enrichment for disease-associated variants.
We use the imputed data to detect low-quality experimental
datasets, to find genomic sites with unexpected epigenomic
signals, to define high-priority marks for new experiments and
to delineate chromatin states in 127 reference epigenomes
spanning diverse tissues and cell types. Our imputed datasets
provide the most comprehensive human regulatory region
annotation to date, and our approach and the Chromimpute
software constitute a useful complement to large-scale
experimental mapping of epigenomic information.

Genome-wide maps of epigenetic information, including histone
modifications, DNA methylation and open chromatin, have emerged
as a powerful means to discover tissue and cell type-specific putative
functional elements and to gain insights into the genetic and epi-
genetic basis of disease!®. Given the dynamic nature of epigenomic
datasets across cell types and conditions, discovery power increases
with broader coverage of diverse samples. However, owing to cost,
time or sample material availability, it is not always possible to map
every mark in every tissue, cell type and condition of interest. As a
result, analyses that require completed sample-mark data matrices
sometimes choose to restrict their comparisons to only those marks
that have been commonly mapped across different samples, leading
to exclusion of marks or samples that did not have full coverage. An
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additional, often underappreciated issue is that even when a mark
is mapped in a sample, it is usually done with few (if any) replicates,
which can confound biological comparisons owing to experimental
variability. This situation is exacerbated when analyzing large com-
pendiums of datasets whose sheer number increases the likelihood
that there will be outlier datasets of lower quality. Lastly, even for
high-quality experiments, robustness of the resulting signal level
estimates may be reduced because of insufficient sequencing depth,
especially for broadly distributed marks that span a large fraction
of the genome.

To address these challenges, we developed ChromImpute for
large-scale imputation of epigenomic datasets. ChromImpute uses
a compendium of epigenomic maps (such as those generated by the
NIH Roadmap Epigenomics and ENCODE projects®!?) to gener-
ate genome-wide predictions of epigenomic signal tracks (such as
histone marks, DNA accessibility, DNA methylation, RNA-seq or
any coordinate-based signal track). We used ChromImpute to pre-
dict signal tracks of histone modifications, DNA accessibility and
RNA-seq at 25-base-pair (bp) resolution and whole genome bisul-
fite DNA methylation data at single-nucleotide resolution (we refer
to all of these data types as ‘marks’ for simplicity). We annotated a
total of 127 reference epigenomes, including 111 generated by the
Roadmap Epigenomics project'® and 16 generated by the ENCODE
project®3. These span diverse cell types and tissues (we refer to them
as ‘samples’ for simplicity, even though some reference epigenomes
were based on multiple independent samples!?).

We provide a systematic evaluation of the imputed data and dem-
onstrate that the imputed data for a mark in a sample better matches
the corresponding observed data than the observed data from any
other sample. We also demonstrate how comparison of observed
data and imputed data provides a state of the art data quality control
metric that complements and surpasses existing methods. Even when
a mark has been experimentally profiled in a sample, we show that
imputed data are generally more consistent, robust and accurate, as
the data leverage information from hundreds of datasets and thus
are resilient to noise arising in individual experiments. The ‘prior
expectation’ of a genome-wide signal provided by the imputed data
can also be used in conjunction with observed datasets for inference
of surprising signal locations in high-quality samples. We also use
the imputation quality of subsets of marks to provide recommen-
dations and insights into experiment prioritization. Lastly, we use
a compendium of 12 imputed marks in 127 reference epigenomes
to predict and annotate a set of 25 chromatin states, providing the
most comprehensive annotation of epigenomic state information in
the human genome to date.
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Figure 1 Application and method overview. (a) Matrix of observed and imputed datasets across 127 reference epigenomes (‘samples’), including 111
from the Roadmap Epigenomics project (rows 1-111) grouped and colored by cell/tissue type, and an additional 16 from ENCODE (rows 112-127),
with reference epigenome identifier (EID) and short sample/tissue description. Epigenomic marks (top) are grouped by tiers 1-3 plus RNA-seq and DNA
methylation (DNA methyl), based on experimental coverage and imputation strategy. Black dotted arrows on the top denote EO17 datasets shown in b
(horizontal arrow), and H3K36me3 datasets shown in ¢ (vertical arrow), illustrating the two dimensions of correlations used in ChromImpute and shown
in d. PB, peripheral blood; Mesench., Mesenchymal; cult cl, cultured cells. (b) Correlation between epigenomic marks in the same sample, one of the
two classes of features used for epigenome imputation. Datasets from sample EO17 are shown, illustrating their highly correlated nature, comparing the
observed signal for H3K4mel from EO17 (gray), the imputed data (red), which was predicted without using the observed data, and the observed tracks
for other marks (blue), ordered based on their correlation with the H3K4me1l. Imputation of H3K4mel in EO17 (red) does not use the observed data
(gray), and instead uses the other samples to learn relationships between H3K4mel and other marks. DNA methylation values below the horizontal line
represent missing data. For the primary imputation of H3K4mel, not all marks shown were used, as only tier 1 marks are used to impute tier 1 marks.
(c) Multiple signal tracks for H3K36me3 across samples illustrate the highly correlated nature of a given mark across samples, exploited in the second
class of features used for epigenome imputation. This example uses the same region as used in b to compare the observed signal for H3K36me3 in
EO17 (gray), H3K36me3 in several other samples (blue), which constitute the basis for highly informative features for H3K36me3 imputation in EO17
(red). Observed tracks (blue) are ordered by their global correlation to the observed H3K36me3 signal in EO17, though ChromImpute did not have this
information when imputing H3K36me3 in EO17, and instead determined sample similarity based on other marks, both globally and locally at each
position, and then used the H3K36me3 signal in up to ten most-proximal samples for each definition of similarity to compute individual features for
each predictor of the ensemble (d, right). (d) Ensemble strategy for signal track imputation using features that exploit correlations between marks in the
same sample (left) and correlations between samples for a given mark (right). We assume that no information is available for the target mark in the target
sample (gray targets). Thus, we learn relationships between marks (left side) in other samples (column of E1 sample is not used) and learn relationships
between samples (right side) using other marks from which we then compute same-mark features. The ensemble predictor that combines features across
marks (b) and across samples (c) is learned only in other samples (top), and the marks in the target sample are used only during the actual application of
the trained ensemble predictors to compute the imputed signals.
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RESULTS

ChromImpute method and previous work on imputation
Imputation has been previously explored in a number of bioinformatics
settings. For microarray experiments, missing gene expression values
have been predicted for specific genes in specific experiments!!. For
genome-wide association studies (GWAS), missing genotype values
are routinely predicted for single-nucleotide polymorphisms (SNPs)
not directly assayed, by exploiting common haplotype structure!2. For
epigenomic datasets, prediction of both DNA methylation and histone
modification datasets has been undertaken from DNA sequence informa-
tion!3-1%, but the static nature of genome sequence limits the ability to
generate cell-type-specific predictions for samples not previously used
for training, as the motifs driving a given mark frequently differ across
samples. Specifically for DNA methylation, imputation has been under-
taken using sequence-based features and histone modification data from
one sample!®17, lower resolution assays in conjunction with sequence
information and other annotations for predicting high-resolution DNA
methylation!®, or assumed phylogenetic relationships between cell
typeslg. For histone modifications and other chromatin marks, methods
have been developed by us and others, to infer chromatin states based on
multiple marks, even in cases with missing data?0-22, but these do not try
to infer the actual signal for the missing marks. Several other methods
have been developed to model correlations of histone marks with expres-
sion or with other marks in a single sample?3-2%, which have sometimes
been leveraged for imputation on a limited scale, but have not considered
across-sample information. In practice, studies interested in a given cell
type sometimes use data from a related cell type, which can be viewed as
one simple approach to imputation.

Here, we take an ensemble regression-based approach to epigenomic
imputation. We impute each target mark in each target sample sepa-
rately, by combining information from large numbers of datasets that
were experimentally determined, but without using any data for the
target mark in the target cell type (Fig. 1a and Supplementary Fig. 1).
We leverage two classes of features (Fig. 1d).

1. Same-sample (different-mark) information (Fig. 1b): The first class
of features uses information from the signal of other marks mapped
in the target sample, both at the target position and at neighboring
sites.

2. Same-mark (different-sample) information (Fig. 1¢): The second
class of features uses information from the signal of the specific
mark of interest at the target position in the most similar samples.
Similar samples are defined based on similarity with the signal of
marks that have been mapped in the target sample both locally and
globally. The features in this class are effectively predictions that
could be made by a K-nearest neighbor method for various values
of K and distance functions.

As no training data are available for the target mark in the target
sample, we learn the relationships between the features and the target
mark using other samples that contain the target mark. We use regression
trees?’, as they can handle nonlinearities (including the constraint that
signal values are non-negative), they support combinatorial interactions
among features, and they are relatively fast to train. The prediction for
each target mark in each target sample is based on an ensemble predictor
that averages the values resulting from regression trees trained on each
sample in which the target mark is available, thus reducing the impact of
biases from any one individual predictor.

Imputation of 4,315 datasets in 127 reference epigenomes
We applied ChromImpute to a compendium of 127 reference epig-

enomes, including 111 profiled by the NIH Roadmap Epigenomics
project!® and 16 profiled by the ENCODE project®? (Fig. 1a). These
span diverse tissues and cell types, including embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSC), ESC-derived cells, blood
and immune cells, skin, brain, adipose, muscle, heart, smooth muscle,
digestive, liver, lung and others.

Only five ‘core’ histone modification marks were experimentally pro-
filed in all 127 reference epigenomes. These are promoter-associated
H3K4me3, enhancer-associated H3K4mel, Polycomb repression-asso-
ciated H3K27me3, transcription-associated H3K36me3 and heterochro-
matin-associated H3K9me3. Varying subsets of 34 marks were profiled
in different epigenomes, including 30 histone modifications (11 histone
methylation marks, 18 histone acetylation marks and H3T11ph), histone
variant H2A.Z, DNA accessibility (profiled by DNase I hypersensitivity),
DNA methylation data (profiled by Whole-Genome Bisulfite Sequencing,
WGBS) and RNA-seq data.

Based on these experimentally profiled (‘observed’) datasets, we
imputed the 31 marks observed in at least two epigenomes in all 127
epigenomes, and the three marks mapped in only one epigenome in the
remaining 126 epigenomes. In total we generated 4,315 datasets based on
imputation, of which only 1,122 (26%) were also experimentally mapped
and 3,193 (74%) were available only as imputed data. Signal tracks for
all marks were imputed at 25-bp resolution (121 million predictions per
track) except for DNA methylation, which was imputed at single-nucle-
otide resolution for each of 28 million CpGs. Across all marks, samples
and positions, we generated a total of 526 billion predicted signal values.

We categorized the 34 epigenomic marks into four classes according to
the number of samples in which they were experimentally profiled and
our imputation strategy (Supplementary Fig. 2).

1. Tier 1 marks were mapped broadly across samples, were used to impute
all other datasets and were imputed using only tier 1 marks. They
consist of H3K4mel, H3K4me3, H3K36me3, H3K27me3, H3K9me3,
H3K27ac, H3K9ac and DNA accessibility.

2. Tier 2 marks were mapped broadly only in ENCODE samples, were
used to impute tier 2 and tier 3 marks, and were imputed using only tier
1 and tier 2 marks. They consist of H3K4me2, H3K79me2, H4K20mel
and H2A.Z.

3. Tier 3 marks had limited coverage, were used only to impute tier 3
marks and were imputed using all three tiers. They consist of the
remaining 20 histone modification marks.

4. DNA methylation and RNA-seq datasets were treated separately as
a design choice due to their very distinct natures. RNA-seq datasets
were imputed using only tier 1 marks and other RNA-seq datasets and,
similarly, DNA methylation datasets, only using tier 1 marks and other
DNA methylation datasets.

This tiered approach for histone marks and DNA accessibility datasets
enabled us to limit potential biases resulting from the lower number of
samples for tier 2 and tier 3 marks (reducing only minimally the informa-
tion available for making predictions).

Imputed datasets capture missing marks effectively

As an initial control, we assessed by visual inspection the level of
similarity between pairs of matching imputed and observed datasets,
using nine randomly selected 200-kb regions and 2,000 randomly
selected 25-bp regions. For each of the nine broad regions, we ran-
domly selected one sample in which the mark was also experimentally
profiled and visualized imputed and observed tracks in detail (Fig. 2a
and Supplementary Fig. 3). For the 2,000 samples, we generated a
dense heatmap showing the observed and imputed mark signal across
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2,000 randomly selected loci (25-bp bins)

Imputed data are a close match to observed datasets. (a) Visualization of one of the randomly

selected 200-kb regions illustrates high-resolution concordance between observed (blue) and imputed
(red) signal tracks. Imputed tracks are generated at 1-bp resolution for DNA methylation and 25-bp
resolution for all other marks and trained without using the observed track. For each mark (row), we
show a randomly selected sample (EID from Fig. 1a), which also contains observed data for comparison
(light purple entries in Fig. 1a). This region was chosen among nine randomly selected 200-kb regions
(Supplementary Fig. 3) as the one with the most signal across all marks. Larger 1.5 Mb context, and
example 5-kb close-up are shown in Supplementary Figure 3c, illustrating concordance at multiple
resolutions. (b) Visualization of 2,000 randomly selected 25-bp regions (columns), and their signal
(yellow, high; blue, low) across up to 127 samples (rows, colored as in Fig. 1a), for tier 1 marks (yellow
sidebar) and RNA-seq and DNA methylation (green sidebar) (tier 2 and tier 3 marks are shown in
Supplementary Fig. 4). Rows and columns are clustered for each mark independently to highlight
structure based on observed data (top), and imputed data (generated without using the corresponding
observed dataset) are shown below, in the same order, showing clear similarity. WGBS, whole genome
bisulfite sequencing. (c) Quantitative comparison of observed signal correlation for ChromImpute (red),

averaging the mark signal from all other samples (green), and the best-case for selecting a single sample

(blue), which is not a realistic method when the target mark signal is not known, as it would be needed
to determine the single-best sample. Average correlation is computed based on all samples for which

both observed and imputed signals are available. ChromImpute shows consistently higher correlation of

observed signals than the two alternate methods (including the unrealistic best case) for all marks. For
additional comparisons see Supplementary Figures 5-7. (d) Average AUC for recovering bases covered
by a narrow peak call on observed datal® when ranking based on predicted signal.

every sample in which both were available (Fig. 2b and Supplementary
Fig. 4). Both visual comparisons showed strong agreement between
observed and imputed signal, successfully recovering epigenomic
features at high resolution, across broad regions (Fig. 2a and
Supplementary Fig. 3c) and in a tissue-specific way (Fig. 2b). Beyond
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the visualizations provided in this paper,
imputed and observed tracks are provided for
the entire genome through public track hubs
on the WashU Epigenome Browser (http://
epigenomegateway.wustl.edu/browser/)?8 and
the UCSC Genome Browser?.

We also assessed the ability of ChromImpute
to predict missing marks using seven quanti-
tative metrics: (i) the genome-wide correla-
tion between observed and imputed data
(“GWecorr,” Fig. 2¢); (ii) the overlap between
imputed and observed datasets in the top
1% of the 25-bp bins with the highest signal
(“Match1”); (iii) the percentage of the top 1%
observed in the top 5% imputed 25-bp bins
(“Catchlobs”); (iv) the percentage of the top
1% imputed in the top 5% observed 25-bp bins
(“Catchlimp”) (Supplementary Figs. 5-7); (v)
the recovery of the top 1% observed and (vi)
1% imputed 25-bp bins based on the full range
of signal of the other using the area under the
curve (AUC) of a receiver operating character-
istic (ROC) curve (“AucObs1” and “Auclmpl1,
Supplementary Figs. 5-7); (vii) and the AUC
recovery of bases covered by observed peak
calls based on the full range of signal of the
imputed data (“CatchPeakObs,” Fig. 2d and
Supplementary Figs. 6-7). These 1% and 5%
percentages captured the diversity of chro-
matin states for each mark (Supplementary
Fig. 8) and captured the majority of high-
signal locations (Fig. 2b and Supplementary
Fig. 4; see also genome-wide signal distribu-
tions discussed below). For DNA methylation,
we used GWcorr and “Methyl25,” a previously
suggested concordance measure that consid-
ered two DNA methylation values to be in
agreement if they were within 0.25 of each
other®’, as focusing on the top few percent of
signal is less meaningful (as the vast majority
of CpG dinucleotides in the human genome
are highly methylated).

To provide perspective on the performance
of ChromImpute in each metric, we com-
pared it to two stringent baselines. The first
baseline, ‘BestSingle; predicts a missing mark
based on the signal of the most similar experi-
mental dataset for the target mark, according
to the specific metric measured across any
other sample. This baseline is unrealistic as
an imputation method because the most
similar experiment is not known in advance,
and is not available to ChromImpute or to
any prediction method. The second baseline,
‘SignalAvg, predicts the average signal of the
target mark across all other samples and can

be thought of as an alternative imputation approach.

ChromImpute showed strong recovery of observed datasets, both in
its overall performance, and relative to both stringent baselines. For the
GWcorr metric, ChromImpute showed 0.68 correlation on average per
mark (vs. 0.50 for both BestSingle and Signal Avg, Fig. 2¢), outperform-
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ing BestSingle for 91% of datasets and SignalAvg for 99% of datasets
per mark on average. ChromImpute showed AUC = 0.95 recovery for
AucObsl (vs. 0.84 and 0.88, Supplementary Fig. 5) on average per
mark, and AUC = 0.96 for CatchPeakObs (vs. 0.83 and 0.88) (Fig. 2d).
For the Methyl25 metric, ChromImpute outperformed SignalAvg 97%
of time, and BestSingle, 76% of the time.

We also compared ChromImpute to several additional imputation
approaches. First, we implemented ChromImpute-LR, using the same
ensemble training strategy but linear regression instead of regression
trees to combine features. ChromImpute had overall similar or better
performance than ChromImpute-LR for the tier 1 and 2 marks and much
better performance for DNA methylation, although ChromImpute-LR
showed somewhat better performance for some tier 3 marks, which had
fewer training datasets available (Supplementary Fig. 9). Second, for
tier 1 histone marks in ESCs and iPSCs, we compared ChromImpute to
a predictor based on averaging of increasingly larger number of these
near-replicate datasets (Supplementary Fig. 10). Predictive power
increased by averaging more replicates, but ChromImpute showed
better predictive power than ten near-replicates for some marks, and
three near-replicates for all marks (Supplementary Fig. 10). Third,
ChromImpute also outperformed nearest-neighbor predictors of a
mark based on local and global distance, a predictor trained on only
one sample instead of the full ensemble (Supplementary Fig. 9) and a
predictor based on averaging active marks in the same sample to predict
other active marks and likewise for repressive marks (Supplementary
Fig. 11), in each case supporting our imputation strategy.

Increased robustness and annotated feature recovery

Although the previous analyses demonstrated that the imputed datasets
provided a reasonable approximation to observed datasets, and thus can
be beneficial when observed data are not available, we next investigated
whether imputed datasets also have distinct advantages that make them
valuable even if observed datasets are available. Two potential reasons
may lead to advantages for imputed datasets: (i) imputed datasets are
based on combining information from many experiments and thus
have the potential to be more robust to experimental noise and other
confounders than the observed data; (ii) by combining relevant infor-
mation from many related experiments, imputed data can achieve a
higher ‘effective’ sequencing depth, and thus potentially a higher signal-
to-noise ratio.

We used the property that promoter-associated H3K4me3 frequently
localizes near transcription start sites (TSS) and that transcription-
associated H3K36me3 frequently localizes in gene bodies. We defined
two metrics that quantify the extent to which the strongest H3K4me3
signal (at 25-bp resolution) localizes within 2 kb of annotated TSS
(“PromRecov;” Fig. 3a) and the strongest H3K36me3 signal localizes
in gene bodies (“GeneRecov” Fig. 3b), using AUC for the portion of
the ROC curve that has a 5% false-positive rate or less (we primarily
focused on this metric instead of the full AUC as we expected many
annotated locations not to be marked by the observed or imputed
data in any one sample, but saw similar results based on the full AUC
(Supplementary Fig. 12a,b)).

We found that imputed data showed better annotation agree-
ment than observed data for every dataset, often by a large margin
(Supplementary Fig. 13). In fact, the worst-performing imputed
H3K4me3 dataset performed better than 96% of observed H3K4me3
datasets, and the worst-performing imputed H3K36me3 dataset
performed better than 91% of observed datasets in the evaluations
(Fig. 3a,b). Recovery of gene bodies for a few of the H3K36me3
observed datasets was only marginally above random, whereas for
imputed data, recovery was consistently high. As these results are based

only on the rank ordering of signal values, any normalization strategy
that preserves the rank ordering (e.g., quantile normalization3!) would
not change these results. We also observed better overall agreement
with annotated features when considering peak calls instead of signal
level (Supplementary Fig. 14).

Additionally, imputed data showed a more robust and consistent sig-
nal profile than observed data. Observed H3K4me3 signal proximal to
all TSSs showed up to a 95-fold variation between samples (Fig. 3¢c),
and observed H3K36me3 showed up to a sevenfold variation in gene
bodies (Fig. 3d). Suggesting that experimental variability, rather than
biological differences, indeed underlies some of these differences, two
fetal brain samples (E081 and E082) showed large heterogeneity in their
aggregate profiles for H3K4me3 and H3K36me3. E081 showed very
flat distributions (Fig. 3¢c,d), whereas E082 and the imputed data for
E081 and E082 all showed much more recognizable distributions (Fig.
3c,d). Consistent with experimental confounders, these E081 datasets
showed relatively poor scores in both the PromRecov and GeneRecov
metrics (Fig. 3a,b).

Imputed marks also showed higher consistency than observed marks
in their genome-wide signal distribution (Supplementary Fig. 15). For
example, for the observed datasets of H3K36me3 in the two fetal brain
samples (E081 and E082), there was an 11.6-fold difference between
the amount of the genome that had signal values > 3, whereas imputed
data showed only a 1.4-fold difference.

We also used the 28 histone and DNA accessibility marks that were
mapped in two different ESC lines (H1 and H9) to compare near rep-
licates for observed and for imputed datasets. We expected that for
high-quality datasets, each mark mapped in H1 should show a higher
correlation with the corresponding mark in H9 than with other marks
in H9 (and conversely for H9 marks). Indeed, this property held more
frequently for imputed data versus observed data (Supplementary
Fig. 16), once more supporting the higher quality of imputed datasets.

Imputed data captured dynamics and sample relationships

To study whether imputed data can capture dynamic epigenomic
information across cell types, we evaluated our PromRecov and
GeneRecov metrics for tissue-restricted annotations, by focusing spe-
cifically on a set of genes that were expressed in the corresponding
samples (Supplementary Figs. 12¢,d and 13¢,d). Imputed data con-
tinued to strongly outperform observed data for the set of expressed
genes, with all but one imputed dataset for H3K4me3 showing higher
PromRecov, and all but one imputed datasets for H3K36me3 showing
higher GeneRecov.

We also compared the ability of imputed and observed data to recover
expressed genes as a function of the number of samples in which they
were expressed (Supplementary Fig. 17). Recovery of both TSS-
proximal regions and gene bodies increased greatly with the number
of samples in which a given gene is expressed for imputed marks (as
expected given the multiple informant samples for each mark) and
for observed marks (suggesting that genes detected as more broadly
expressed show greater agreement with histone modification marks
even for observed data). Notably, imputed H3K4me3 showed higher
PromRecov independent of how restricted the expression was to certain
samples, even for TSS regions of genes expressed in a single sample.
For H3K36me3, observed marks showed a modestly higher recovery
of gene bodies for genes expressed in only six samples or fewer (3% of
expressed genes in a sample, on average). However, for the remaining
genes expressed in larger numbers of samples, imputed datasets con-
sistently outperformed observed datasets.

For all tier 1-3 marks, we directly compared the correlation
between observed gene expression levels and the signal data for both
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observed and imputed marks (Supplementary Fig. 18). For nearly
all positively correlated marks, imputed signal showed a greater posi-
tive correlation with gene expression than observed signal, both in
TSS-proximal regions (Supplementary Fig. 18a) and in gene bod-
ies (Supplementary Fig. 18b). For negatively correlated marks,
observed data showed greater negative correlation with expression
than imputed data, but this higher negative correlation was asso-
ciated with lower-quality observed datasets, and the difference
was reduced when focusing only on higher-quality observed data,
both in TSS-proximal regions and in gene bodies (Supplementary
Fig. 18c,d).

We also evaluated the ability of both imputed and observed datas-
ets to capture the relationships between tissues and cell types based on
genome-wide correlation analysis between pairs of datasets (Fig. 3e,f
and Supplementary Fig. 19). Specifically, we compared the imputed
and observed data for their ability to group samples in accordance with
their tissue group (defined in ref. 10 and shown in Fig. 1a of this paper)
based on the correlation of individual marks (Fig. 3e and Supplementary
Fig. 19). We found the imputed data showed a correlation matrix with
a strongly pronounced block structure, cor-
responding to the biological groupings of cell a
types and tissues. This was substantially weaker
in observed datasets, suggesting imputed data

o
2

e

o
S
]

Promoter recovery (+2 KB TSS) with H3K4me3 signal

ANALYSIS

different-group sample pairs (excluding the heterogeneous ENCODE’
and ‘Other’ groups), based on the relative genome-wide pairwise cor-
relation, evaluated as the AUC for both observed and imputed sig-
nal (Fig. 3f). Imputed data consistently outperformed observed data,
showing an average AUC of 0.92 versus 0.79 for observed data. The
increase in classification power was most pronounced for H3K4me3,
H3K36me3, H3K27me3 and H3K9me3, which are generally considered
less cell-type specific (AUC = 0.93 vs. 0.70).

These results also held for sample group classification based on his-
tone mark peak call similarity (Supplementary Fig. 20), when trying
to distinguish pairs of samples having the same anatomy annotation
from those that have a different one!® (with all marks except DNA
methylation showing increased accuracy for imputed data compared
to observed data, Supplementary Table 1 and Supplementary Fig. 20),
and for higher-resolution distinctions beyond the tissue group level, as
ChromImpute predictions showed higher correlation with correspond-
ing observed data than predictions obtained by averaging all other
same-group experiments (Supplementary Fig. 21). We reasoned that
perhaps a weighted average of observed and imputed data may further

T

Gene body recovery with H3K36me3 signal

better captured sample relationships.
To quantify this difference, we evaluated the
ability of each tier 1 mark, DNA methylation
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improve classification power, but we did not
see substantial improvement in a combination
approach relative to just using the imputed
data, except for DNA methylation where a
balanced combination showed the highest
classification power (Supplementary Fig. 22).

Imputed data improved GWAS
enrichments

As epigenomic maps have recently emerged
as an unbiased approach for discovering dis-
ease-relevant tissues and cell types®32, we also
evaluated the impact of epigenome imputation
on the interpretation of trait-associated vari-
ants from GWAS. We quantified the enrich-
ment (positive or negative) of trait-associated
variants from the National Human Genome
Research Institute (NHGRI) GWAS catalog3?
in both observed and imputed datasets for each
tier 1 mark. We evaluated enrichments both
in aggregate across all studies, based on area
under an ROC curve up to a 5% false-positive
rate (AUC5%) for the signal level recovery
of trait-associated SNPs, and at the level of
individual studies, based on mark signal rank
differences between each study’s SNPs and all
other SNPs in the GWAS catalog. We evaluated
both the number of studies for which there was
a significant signal rank difference in at least
one sample, and the total number of study-
sample pairs that were significant, at varying P
value thresholds. We then compared both the
number of significant studies and the number
of significant pairs to the numbers obtained
for randomized versions of the GWAS catalog,
which also enabled us to obtain a false-discov-
ery rate estimate for each P-value threshold
(Supplementary Table 2).

For all tier 1 active marks, imputed data
resulted in substantially greater recovery of
SNPs in the GWAS catalog than the observed
data (Supplementary Fig. 23), and more sig-
nificant enrichments for both the number
of studies and the number of study-sample
pairs, across all tested significance thresholds
(Fig. 4a and Supplementary Figs. 24 and 25).
In addition, the imputed data yielded a stron-
ger enrichment for each enriched study-sample
pair in the large majority of cases (Fig. 4b and
Supplementary Fig. 26). We confirmed that
the actual GWAS catalog yielded substantially
more significant associations than randomized
versions, for both the observed and imputed
data across a range of P-value significance
thresholds (Fig. 4a and Supplementary Figs.
24 and 25). Imputed data performance was

substantially higher than that of the average mark signal across all avail-
able samples (Supplementary Fig. 24b), emphasizing that the higher
performance was not simply due to averaging multiple samples. We also
confirmed that the samples with the strongest positive enrichments for
a given study were generally biologically relevant for active marks. For
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H3K27ac, for example, we found that liver was the most enriched sample
for various cholesterol phenotypes, immune-related cells for various
immune-related disorders, colonic mucosa for ulcerative colitis. Many
additional biologically meaningful enrichments were found for diverse
studies and cell types (Fig. 4c—f and Supplementary Table 2).
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These results help validate the biological relevance of imputed datasets,
based on an orthogonal annotation source, and help illustrate imputed
datasets as a potentially useful resource for interpreting GWAS results.

Imputed datasets are informative for quality control

We next studied whether discrepancy between imputed and observed
datasets is indicative of lower-quality experiments and can be used as a
quality control (QC) metric. We ranked all H3K4me3 and H3K36me3
datasets based on PromRecov and GeneRecov scores, respectively,
providing an independent benchmark informative of dataset quality
(Fig. 5a). We then compared several QC metrics previously applied to
these datasets'?, based on their ability to flag the worst-ranked datasets.

Figure 5 Low similarity between imputed a
and observed data reveals low-quality

datasets. (a) Comparison of QC metrics
(columns) for the ten datasets (rows)

showing lowest agreement with gene

GeneRecov/
PromRecov
EE Read depth
SPOT
FindPeaks

ANALYSIS

These metrics are based on the proportion of reads falling in enriched
regions as determined by various methods (signal proportion of tags
(SPOT)?*, pre-binned regions enriched based on a Poisson distribution!
and FindPeaks?) and signal correlations between forward and reverse
reads (normalized strand correlation (NSC) and relative strand cross-
correlation (RSC))3¢.

Traditional QC metrics indeed flagged several worst-ranked H3K4me3
and H3K36me3 datasets, but failed to detect several cases, especially for
lower read depths. This was more pronounced for H3K36me3, where
two metrics (NSC, RSC) failed to detect the majority of low-GeneRecov
datasets, and several datasets (E104, E022, E087, E109) were not
detected as problematic by any of the traditional QC metrics. A deeper
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understanding of the sources of lower-quality datasets is beyond the scope
of this paper, but the low read depth of several flagged datasets (Fig. 5a and
Supplementary Fig. 27) suggests that deeper sequencing in some cases
could improve overall quality.

By contrast, imputation-based QC metrics were consistently able to
capture worst-ranked datasets, even when traditional QC metrics failed
(Fig. 5a). We evaluated two imputation-based QC metrics, the first
based on our Match1 score (overlap of the top 1% of imputed signal with
observed signal) (Supplementary Fig. 8) and the second based on our
GWcorr score (genome-wide correlation in signal between imputed and
observed signal tracks). Both performed well, showing the best agree-
ment with PromRecov and GeneRecov at detecting the worst datasets
(Fig. 5a). Notably, the E104 Right Atrium H3K36me3 dataset (which both
the GeneRecov and imputation metrics ranked as the worst H3K36me3
dataset and had the lowest sequencing coverage depth) was rated as the
single highest-quality H3K36me3 dataset, based on the NSC metric, and
was considered among the ten highest-quality H3K36me3 datasets by
SPOT. The metagene plot of this sample shows inconsistencies with the
typical pattern for H3K36me3 and is suggestive of possible antibody cross-
reactivity (Fig. 5d), illustrating how QC measures based on agreement
with imputed data can be used to identify likely problematic datasets that
are missed by other QC measures, which are ineffective in cases of label
swaps or antibody cross-reactivity.

Observed datasets varied substantially in their agreement with their
corresponding imputed datasets (Fig. 5b and Supplementary Table 3
and Supplementary Fig. 28). Moreover, the observed signal tracks for
the worst-scoring samples (Match1 metric) showed striking visual differ-
ences from the best samples, whereas the corresponding imputed signal
tracks had a consistently strong signal (Fig. 5¢,d). When correlating QC
metrics and read depth across all samples (Supplementary Fig. 27), the
GWcorr and Matchl metrics showed among the highest correlations
with both PromRecov and GeneRecov and were better correlated with
sequencing depth for all histone marks, while being distinct from other
QC metrics for all marks, highlighting that imputation-based QC mea-
sures capture important information, which is complementary, from
existing QC metrics.

Imputed data identified unexpected signal regions

Although many high-quality experiments will globally agree with the
imputed data, there could be specific locations for which the imputed
data do not match the observed data. Because the imputed data consti-
tute a form of prior expectation on the observed data, genomic locations
where the two disagree can pinpoint biologically interesting locations
and in some cases tissue-specific regulatory drivers.

To investigate this application of imputed datasets, we analyzed
genomic locations showing strong DNA accessibility in observed
data, but weak or no DNA accessibility in imputed data. Sequence
motif analysis of these locations revealed an enrichment of biologi-
cally relevant regulatory motifs with known cell type-specific roles
(Supplementary Fig. 29). For example NFKB motifs were found using
primary monocyte DNA accessibility (E029) consistent with immune
regulation, and PAX2 motifs in fetal kidney DNA accessibility (E086)
consistent with roles in kidney development®”.

Thus, even for high-quality datasets, building a prior expectation of
signal across the entire genome can also be informative for identifying
locally dissimilar locations, which may be associated with cell type-spe-
cific and tissue-specific regulatory processes. However, if a mark that
is highly correlated with the mark of interest is already present, then
the imputation may already provide a close enough approximation to
the true signal so that dissimilar locations may be due to biological or
experimental noise, rather than cell type-specific regulation.

Imputation feature usage varies across marks

We next sought to gain information about the utilization of different
marks and features for imputing datasets. We first studied the frequency
with which each feature was utilized in our regression trees, at the root
(Supplementary Fig. 30a) or at any position (Supplementary Figs. 30b
and 31) when it was available. We did this both for the primary imputa-
tion analyzed above, treating tier 1, tier 2 and tier 3 marks separately,
given their differences in coverage, and another imputation restricted
to the seven samples with deep coverage of many marks®, treating all
tier 1-3 marks uniformly, given their similar coverage.

For nearly all acetylation marks, the most frequent feature at the root
was another acetylation mark at the same genomic position in the same
sample, reflecting the highly correlated and dynamic nature of acetyla-
tion marks. For histone methylations, DNA accessibility, RNA-seq and
DNA methylation, the most informative feature for the root was more
often based on the same mark in a set of nearest K samples, consistent
with their more stable nature across cell types.

When considering any position in the regression tree, the most fre-
quently used features were from other marks in the same sample and the
same position, although all positions surrounding the target genomic
location were used quite often (Supplementary Fig. 31). DNA acces-
sibility was less frequently used at the exact target position compared
to histone mark features (Supplementary Fig. 31), reflecting the slight
displacement of nucleosomes relative to open-chromatin regions, and
thus the offset of histone modification marks relative to DNA accessibil-
ity peaks.

Chromatin state annotation using many imputed marks

Given the importance of chromatin mark combinations for distinguish-
ing biologically meaningful features and different classes of regulatory
elements, we used ChromHMM?2%21 to discover chromatin states based
on imputed marks. Chromatin state analysis based on observed data
in the Roadmap Epigenomics project primarily focused on the five
marks common to all 127 samples (H3K4mel, H3K4me3, H3K36me3,
H3K27me3 and H3K9me3) or only six marks (with H3K27ac) for 98
samples!®, with the number of samples rapidly decreasing as addi-
tional marks are considered due to missing datasets. ChromHMM
explicitly handles missing data, but absence of a particular mark can
result in dramatic reduction in the genomic coverage of correspond-
ing chromatin states in the samples that are missing a defining mark
(e.g., a DNA accessibility-dominated chromatin state shows 60-fold
reduction for samples that lack DNA accessibility, Supplementary
Fig. 32). Epigenomic mark imputation circumvents these limitations
and provides a practical alternative to the missing-data strategy of
ChromHMM, enabling learning of chromatin states jointly on uni-
form signal tracks for large numbers of epigenomic features across large
numbers of samples.

We first trained a 25-state model jointly? across all 127 samples
(Fig. 6b,c) using all tier 1 and 2 marks. This captured multiple types
of promoter, enhancer, open chromatin, transcribed and repressed
states and shows specific gene annotation, conservation, DNA meth-
ylation, and RNA-seq enrichments (Fig. 6b,c and Supplementary
Fig. 33). Compared to the 15-state chromatin state model based on
observed data in the 127 samples'? (Supplementary Fig. 33), the
12-mark model better distinguished active versus poised enhancer
states (using H3K27ac and H3K9ac) and captured novel states (e.g.,
state 19_DNase showing DNA accessibility but lacking enhancer/pro-
moter marks and state 5_Tx5' associated with 5’ ends of transcripts and
based on H3K79me2). Because of the increased stability and robust-
ness of imputed data, imputation-based chromatin states showed more
consistent genome coverage across samples (Supplementary Fig. 34),
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better agreement with annotated gene bodies and TSS, both for all  of evolutionarily conserved elements (Supplementary Fig. 36)3%.
genes (Supplementary Fig. 35a,b) and for a set of genes expressed in  Additionally, we saw better recovery of a sample that was not included
a given tissue (Supplementary Fig. 35¢,d), and better discrimination  in any of our training data (an osteoblast DNA accessibility dataset®®,
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Figure 6 Imputation using mark subsets and chromatin state learning. (a) Imputation agreement for each mark (columns) using subsets of features (rows)

in top 1% signal bins or 0.25 concordance measure for DNA methylation, for Chr10 relative to agreement achieved when using all features based on the
seven samples with deep mark coverage without making distinctions between the tier 1-3 marks. Same-sample features are most important for acetylation
marks, and same-mark features are most important for H3K27me3, H3K36me3, H3K9me3 and RNA-seq. Profiling of only H3K18ac and H3K79me2
allows higher relative imputation agreement than all five core marks, assuming a compendium with uniform coverage of marks. Performance for additional
subsets is shown in Supplementary Figure 42. The last two columns show the average performance of the feature subset over all target marks and specifically
for acetylations. Core=H3K4mel, H3K4me3, H3K36me3, H3K27me3, H3K9me3. For the purpose of computing these averages for mark subsets, if the
target mark was included in the subset then a value of 1 was used for the target mark; the imputation performance restricted to other marks in the subset,
when available, is provided in the table. The H3K18ac+H3K79me2 and tier 1 and 2 mark evaluations were limited to the five samples that were deeply
profiled across marks and also had experimentally profiled H3K79me2. (b) Portion of a chromatin state segmentation using imputed data of 12 marks across
127 samples using the 25-state model and colors shown in ¢. Segmentation is highly consistent for similar samples but is able to capture highly dynamic
regulatory elements across different samples. (c) Chromatin state model using 12 marks and 25 states, trained jointly using imputed data across all 127
samples. For each state (rows) are shown its emission parameters, genome coverage, relative functional enrichments for diverse annotations and conserved
elements, and median observed and imputed DNA methylation and RNA-seq signal (Supplementary Fig. 33), followed by a candidate state annotation. (d)
Expanded chromatin state model trained using 50 states and 29 marks in seven samples with deep mark coverage. States are grouped and labeled by the
maximum-enrichment 25-state model match. Additional marks in this model are shown to the left of the vertical line. Emission parameters and functional
enrichments (similar to ¢), and percentage of locations recovered for each state using subsets of marks (Supplementary Figs. 40, 41 and 43). ‘+H3K18ac’
denotes the subset of tier 1 and 2 marks extended by H3K18ac. When the same chromatin state was not maximally recovered with tier 1 and 2 marks, the
last two columns denote the best other state and its percent assignment.
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Supplementary Fig. 37) including for sample-specific sites; in addi-
tion we captured major sample type differences in chromatin states
(e.g., ESC/iPSC samples showed consistently more abundant bivalent
promoter states*’, Supplementary Fig. 38), with differences in some
cases more pronounced than for chromatin states based on observed
data (Supplementary Fig. 38).

We also trained a 50-state model using imputed data for 29 marks
across the seven deeply covered samples. The model showed distinct
state emission parameters, diverse functional enrichments, and rela-
tively consistent correlations in emission parameters and mark fre-
quency across samples for nearly all states (Fig. 6d and Supplementary
Figs. 39-41).

Accurate imputation using a limited number of marks

To help prioritize marks for experimental profiling in new cell types, we
studied the subset of marks that provide the highest-accuracy imputa-
tion. We considered two settings, the first (‘unrelated setting’) assuming
that new samples are largely dissimilar to any existing in the compen-
dium and can rely only on same-sample features, and the second (‘related
setting’) assuming that new samples are related to an existing compen-
dium of datasets with roughly uniform coverage of each mark that can
be used to impute in the new sample.

In both settings, we assessed the predictive power of a subset of features
by comparing the agreement achieved between the observed signal and
the imputed signal using the subset of features, relative to the agreement
achieved using all features. We chose this ‘relative agreement’ metric to
avoid penalizing the prediction of marks that are hard to impute even
when using all features due to low-quality signal. We evaluated this rela-
tive agreement using the Match1 metric (except for DNA methylation,
where we used Methyl25 in place), and using the coefficient of determi-
nation (R?). We restricted these evaluations to the seven deep-coverage
samples on chr10 and did not make distinctions between the tier 1-3
marks when performing the imputation (Supplementary Fig. 8).

In the ‘unrelated’ setting (same-sample features only), imputa-
tion of H3K36me3, H3K9me3, H3K27me3 and RNA-seq showed the
lowest relative Match1 scores (20-39%) (Fig. 6a and Supplementary
Fig. 42a), followed by DNA accessibility (70%), H3K79me2 (82%), and
H3K4mel/2/3, H2A.Z and H3K79mel (92-93%), suggesting a prioriti-
zation based on the marks that are hardest to impute using same-sample
features, even if all other marks are used. All acetylation marks showed
higher relative Match1 scores (97-100%), but H3K27ac had the lowest
relative score among them (97%), suggesting it contains the most unique
information. Relative Match1 score recovery was 87%, on average, across
all marks when using all same-sample features, 70% when using only
the five core marks (counting experimentally mapped marks as 100%
recovered), 73% using the core marks and either DNA accessibility or
H3K9ac, 78% using the core marks and H3K27ac, and 85% using all
tier 1 and 2 marks (Fig. 6a and Supplementary Fig. 42a). R? values
showed overall similar results and conclusions, but revealed a lower
relative agreement for DNA methylation (Supplementary Fig. 42b),
also highlighting its unique information relative to other marks in the
same sample.

In the ‘related’ setting (both same-sample and same-mark features),
the five core marks resulted in 80% Matchl relative recovery on aver-
age across all marks, which increased, respectively, to 86%, 82% and
81% with inclusion of H3K27ac, H3K9ac or DNA accessibility, and
increased to 89% using all tier 1 and 2 marks (Fig. 6a). Recovery of
acetylation marks was on average lower (66%) using only the five
core marks, but increased to 77%, 71% and 68%, respectively, with
inclusion of H3K27ac, H3K9ac or DNA accessibility. Using one or
two marks led to sometimes surprisingly high recovery of many

other marks. For example, H3K18ac was the single mark giving the
highest average recovery of all others marks (87%; 88% for acetyla-
tion marks), and greater than 80% recovery for all marks except
H4K20mel, H3K79mel and H3K23me2. Profiling of H3K79me2
was highly complementary, resulting in 98% recovery for H4K20mel
and H3K79mel; and profiling of H3K79me2 in combination with
H3K18ac resulted in 90% average recovery of marks in a new cell
type, when leveraging the entire existing data compendium, but only
71% average recovery using same-sample features.

We also used chromatin states to evaluate the ‘unrelated’ setting,
based on the ability of subsets of the 29 marks to recover each of the 50
chromatin states learned from imputed data in the seven deeply covered
samples when treating the remaining marks as missing?’ (Fig. 6d and
Supplementary Fig. 43). We found that holding out any of DNA acces-
sibility, H3K9me3, H3K36me3, H3K4mel, H3K27me3 or H3K27ac
resulted in at least one ‘missing’ state (<20% recovery; Supplementary
Fig. 43a). Holding out H2A.Z, H3K79me2, H4K20mel, H3K79mel,
H3K4me3 or H3K4me2 resulted in at least one state with less than
70% recovery. No single mark in isolation led to substantial state
recovery beyond the states that were primarily defined by that mark
(Supplementary Fig. 43d). Using only the five core marks and treating
all remaining marks as missing data resulted in 31% average recovery
of assigned locations for each state (Fig 6d and Supplementary Fig.
43c). Including H3K27ac, H3K9ac or DNA accessibility increased
average recovery to only 35-37%, and the greatest average state recov-
ery of any mark was 43% with the additional inclusion of H3K18ac.
Using all tier 1 and 2 marks together increased the average recovery
to 65%, with only 12 states showing 30% or less recovery (Fig. 6d and
Supplementary Fig. 43b). Inclusion of H3K18ac with the tier 1 and
tier 2 marks increased average state recovery to 77%, with all states
showing greater than 30% recovery. These results suggest substantial
additional diversity of chromatin states not captured based on the chro-
matin marks that have received extensive mapping by the Roadmap
Epigenomics and ENCODE projects.

DISCUSSION

In this paper we introduced a computational approach for prediction
(imputation) of genome-wide epigenomic signals applied at 25-bp
resolution. The method imputes both missing and existing datasets
by leveraging correlations of epigenomic marks within a given sample
and similarities in the epigenomic landscape of related samples, and it
is applicable to any type of functional data that can be represented as a
signal track. We developed and applied an array of quantitative metrics
and tests to evaluate the accuracy of the imputed data. We showed that
the imputed data of a mark in a sample is of high resolution and a better
match to the observed data than using the average of all other observed
datasets of that mark (an important baseline comparison for any such
study), and it is also a better match than even the single closest dataset
(a benchmark that would require knowledge of the target mark and is
thus not possible in practice).

We showed that imputed data outperformed observed data based
on a number of analyses: (i) similarity to annotated gene features;
(ii) consistency across closely related samples; (iii) capture of biological
relationships between tissue and cell types; (iv) correlation with observed
gene expression; (v) enrichment of SNPs identified in GWAS; (vi) chro-
matin state capture of TSS, gene bodies, tissue-restricted activity and
conserved elements. The observed data only showed a modest advantage
in identifying genes showing the most tissue-specific expression patterns
(approximately 3% of genes in each sample). Furthermore, disagreement
between observed and imputed data were usually due to lower-quality
experimental datasets, and not low-quality imputation.
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Our benchmarks show that in practice, observed data are not always
an uncontested gold standard, but that both observed and imputed
data are of important and complementary value, each with its own
merits, and each likely to have both false-negative and false-positive
signals. Certainly, when high-quality, deeply sequenced and exten-
sively replicated experiments are available, they remain a gold standard.
However, with the reality of budgetary and sample limitations, our work
establishes imputed data as an important complement to experimental
studies. For any fixed number of budgeted experiments, imputation
allows projects to explore a larger diversity of samples, assays or condi-
tions, and to increase robustness by leveraging automatically learned
correlations in these datasets, rather than relying solely on direct experi-
mental profiling and replicates to increase robustness.

Moreover, the combined use of observed and imputed data opens
many new applications that were previously not possible. Imputed data
can be used as a prior expectation for an experiment, against which
observed data can be compared and benchmarked. We demonstrated
two applications of such comparisons, using global discrepancies
between observed and imputed data as a QC metric, and identifying
surprising locations that we found enriched for regulator targets. For
QCin particular, we showed that low agreement between imputed and
observed data revealed problematic datasets that were missed by many
existing metrics that focus on signal-to-noise properties of the data,
and thus can miss sample mix-ups, cross-reacting antibodies or other
experimental errors. With more densely sampled epigenomic datasets,
we expect that next-generation QC metrics will increasingly exploit
imputation-like measures, such as our stringent baselines defined ear-
lier or the more sophisticated agreement with ChromImpute.

Our work also has implications for experiment prioritization for
large-scale epigenomic mapping efforts. The Roadmap Epigenomics
project mapped a set of six histone marks at highest depth: H3K4mel,
H3K4me3, H3K27me3, H3K9me3, H3K36me3 and H3K27ac. Our
results validate this strategy, as H3K27me3, H3K9me3 and H3K36me3
could not be imputed effectively using same-sample data even if every
other mark in the same sample was mapped, and H3K4mel, H3K4me3
and H3K27ac all had substantial unique information that could not
be predicted from just using same-sample features of the other five
marks. Our results support possibly extending this set with H3K18ac,
which led to better imputation of non-H3K27ac acetylations and with
H3K79me2, which led to better capture of transcription-associated
marks. The evidence shows both marks are important in their own right,
H3K18ac in pathogen response*! and cancer*?~#> , and H3K79me?2 in
epigenetic memory“®, development and cancer?’.

It is also important to recognize limitations of the imputation
approach. If the presence of mark signal is highly specific to one or a
few samples, and it does not correlate with other marks mapped in the
sample or has a different correlation structure than in samples used for
training, then it would not be possible to accurately impute the mark at
those locations. When the target mark has been mapped in only a few
samples, the features pertaining to the same mark in other samples may
be less informative or more biased. For example, imputation of tran-
scription factor binding may be more challenging, as their correlation
structure with other marks can vary greatly across samples, depending
on whether a transcription factor is active or not, and most have been
mapped in only a limited number of samples. A limitation of our cur-
rent framework when imputing datasets across individuals is that we
do not currently incorporate genetic variation as an input, and this is
potentially an important area of future development given that datasets
on chromatin marks and genotype across individuals are becoming
increasingly available*8-%0, For tissue samples that reflect mixtures of
multiple cell types, our imputed maps will most likely reflect the same
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mixture as the observed data, though deconvolution of mixed samples
is a potentially important direction for future work.

Lastly, our paper contributes, to our knowledge, the most comprehen-
sive epigenomic resource to date, including 4,315 imputed datasets across
127 samples and 34 marks (of which only 26% have been experimentally
profiled). The remaining 74% (3,193 datasets) exist only as imputed data,
dramatically expanding the number, diversity and completeness of even
the most complete existing set of epigenomic maps. We also provide an
annotation of 25 chromatin states based on 12 imputed marks across 127
samples, and of 50 chromatin states based on 29 epigenomic marks across
7 samples, providing the most comprehensive collection of regulatory
annotations across the human genome to date. As our initial analyses
demonstrate, the resulting annotation of the noncoding portion of the
human genome can increase the power of future studies of gene regula-
tion, cellular differentiation, genetic variation and human disease.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. All imputed signal datasets and peak calls and chro-
matin states based on imputed data are available from http://compbio.
mit.edu/roadmap/. The ChromImpute software is available at http://
www.biolchem.ucla.edu/labs/ernst/ChromImpute/ and source code is
provided as Supplementary File 1 and maintained at https://github.
com/jernst98/ChromImpute.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Signal tracks. For the histone mark and DNase signal tracks we used the version
of the reference epigenomes signal tracks based on the -log;, P value of enrich-
ment relative to input control based on a Poisson distribution from (Roadmap
Epigenomics Consortium et al., 2015)!°, available through http://compbio.mit.
edu/roadmap/. Some of these reference epigenomes are based on multiple bio-
logical samples that were pooled, but we refer to each reference epigenome as
a ‘sample’ here. We only used the signal for chromosomes 1-22 and X. For the
RNA-seq data we converted the uniformly processed unstranded signal tracks,
also available from the same site, to normalized RPKM values, then added one,
and then took the log base 2 value. The normalized RPKM values were computed
based on multiplying the unnormalized signal value by 10° then dividing by
the product of the read length and the number of exonic reads, excluding the
mitochondria, ribosome and the top 0.5% of signal values'?. We converted these
signal tracks for the histone marks, DNase and RNA-seq data to a 25-bp resolu-
tion by taking the base level average of signal overlapping each 25-bp bin. For
the DNA methylation we used the uniformly processed whole genome bisulfite
data!?, which provided a fraction methylated value at each base within all CpGs
that had more than three reads covering it. We filled in missing values for bases
within CpGs by replacing them with the genome average for DNA methylation
when training and the chromosome average when applying the predictors as
this step was done on each chromosome independently.

We selected the —log;, P value signal tracks rather than the fold-change tracks
for histone marks and DNase as they were designated the primary signal tracks
for analyses in (Roadmap Epigenomics Consortium et al., 2015)!0 on the basis
of having better signal-to-noise properties. In particular, both sets of tracks
were generated based on downsampling highly sequenced datasets to the same
sequencing depth, thus in the -log,, P value track, no dataset had a dispropor-
tionately high signal simply due to being sequenced very deeply, whereas on
the other hand under-sequenced datasets were included and in some cases had
locations with high fold-change signals that were the result of noise and did not
have values as relatively high on the -log;, P-value track. Additionally focus-
ing on the -log,, P-value tracks is more consistent with the basis of the default
binarization of ChromHMM?! used for the chromatin state learning.

ChromImpute method. The ChromImpute method predicts the signal of a
target mark in a target sample based on two classes of features: (i) other marks
mapped in the same sample and (ii) the target mark in other samples. Predictors
that integrate these features are trained based on each sample for which we
have the target mark available, excluding the target sample. The ensemble of
trained predictors are then each applied in the target sample and their predic-
tions are averaged to obtain the final predictions. The ensemble approach would
be expected to tend to average out biases associated with any one predictor.

Formally, let o, , represent the observed value of mark m in sample c at
position p. Let M, denote the set of marks in sample c among those eligible
to be used to predict mark m. Let C,, denote the set of samples in which mark
m has been mapped. Let m' denote the target mark and ¢’ the target sample.
To predict mark m! in sample ¢ for each sample ¢’ € C,,! \{c'}, we separately
define features. For a sample ¢’ we let M, denote M_¢ .t NM,*,,,A{m'}, which is
the subset of common marks between ¢! and ¢! that can be used to predict the
target mark m', and then define the two classes of features to predict the signal
of mark ' in sample ¢! at a target genomic position p.

Ju—

. Features based on the set of other marks mapped in the same sample. We define
features s,,, ,, for each mark m € M;and each value of # such that n = 500i or
n = 25i for integer values of i = -20,...,20. The feature s,,, ,, is assigned a value
Oct' 1 pin- IN OUT NOtation p+n refers to a position on the same chromosome
as p, but a base position shifted by #. This corresponds to having features at
the target position and every 25 bp within 500 bp, and every 500 bp within
10,000 bp both upstream and downstream of the target position.

2. Features based on the target mark in other samples. We define features f,, ,

for each mark m € M}, g € {local,global}, and k = 1,...,min(10,|C;|) where

we define C; to be C,,t N C,\c!',c'}. C; corresponds to all samples having the
target mark and the mark that will be used for determining similar samples
excluding the overall target sample and the sample being used for training
the predictor. f,, .  has the value k Z oc,mp where c;is the sample of C; that

]
is in the ranked position j when each sample ¢ € C;is ordered in increasing
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value of dm)g(c‘/, ¢). If g = global, then dm,g(c", ¢)=1-plo 0., where p
is the Pearson correlation coefficient applied to the genome-wide signal of
mark m in samples ¢ and c. If ¢ = local, then at the position p

20

£y .
Ay g(cts) = 2 (Ot ,p+25i = O
i=-20

o m,p+251)°

which uses the signal at target position and every 25-bp interval within 500 bp
to determine the nearest samples. Ties for the nearest sample based on local
distance were broken arbitrarily.

We construct feature vectors by combining all the s, , and f,, ., features
defined above. Features when applying a predictor in sample ¢! trained on sample
¢’ are defined as above except ¢! is interchanged with c.

The specific predictors we used were regression trees?’. Formally we define a
regression tree, T, to have a set of split nodes S and a set of leaf nodes N. A split
node sE€S can be represented by the 4-tuple (f, v, I, r) where fis a feature used to
the split the data, v is the value of feature f on which the split is based, and / and
rare nodes in SUN. A leaf node nEN can be represented by a 1-tuple (e) which
is the prediction value associated with the node. In addition one node wESUN
is designated as the root of the tree. We let u denote a vector of feature values
for which an output prediction should be generated. To generate a prediction
we start by setting a variable z to the root node w, and then while z is not a leaf
node, if u.(z.f) <z.v we let z=z.] and otherwise z=z.r where u.x refers to feature x
of vector u. Once z is a leaf node the prediction of z.e is made.

We train regression trees for a mark m! based on sample c for a set of
sampled positions P recursively. We define a node creation procedure that
takes as input a set X of positions and identifies a feature, f, and split value,
v, on which to split the positions. In the procedure we define the sets

A1 :{peX‘ Yot it f = V} and Xg, = S > "}

where u.¢ ¢t .. f corresponds to the feature value fof the feature vector for posi-
tion p as defined above when considering m! based on sample c. If the set
{1 X, 12 20 Alfov | =20} is empty, meaning there is no split that can be
created with both subsets of the partition containing at least 20 data points, a
constraint intended to reduce overfitting, then we create aleaf node n where the
associated output predlcnon of the node n.e is set to 77 ‘X‘ Zpex0y,, » that is, the
average value of mark m! in sample ¢! at all positions in X; otherwise, we
create a split node s and set s.fand s.v to fand v, respectively, based on

Z
argmin ( E E
(I, 1 201X, | 220} |

{p EX‘ uct wtp

PEXI., peXL/
* E ( 04 ¢ E Oy 4 ) 2)
¢t ,m',, , c,m,p'
g ¢ mip |XRV PeXy,

This chooses a split that minimizes the squared error of the resulting output
prediction subject to the constraint that both subsets of the partition have at least
20 data points. We then set 5./ and s.7 to the nodes created by applying the node
creation procedure to the set of positions Xiyp, and XR,, respectively. Ties for
the best split feature and value were broken randomly. Input data were rounded
to the nearest tenth, for generating features, training and applying the predic-
tors, and only those values present in the training data were considered as split
values. DNA methylation values were treated as percentages for the purposes
of this rounding, but the final output for DNA methylation was reported as a
fraction. The node creation procedure is initially called with all positions in P,
which creates the root node.

To make a prediction in sample ¢! for mark m' at position p we compute

1 b
WE? Ecmt\{ct}zileCt’>mrPi (uct’mr’P)

where b is number of sets of sampled positions and Tct',mt,Pi (uct,mt ,p)
denotes the prediction made by the regression tree trained on sample ¢’ to pre-
dict mark m" using the set of sampled positions P; when applied to the feature
vector defined as above for predicting mark m’ in sample ¢ at position p.

Each set of positions for training contained 100,000 randomly sampled posi-
tions. We used one set of positions for training, with two exceptions. We trained
predictors for the tier 3 marks in the primary imputation and for all marks in the
imputation restricted to the seven samples with deep coverage of many marks
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(E003, E004, E005, E006, E007, E008, E017)19 on the basis of three independent
100,000 sampled positions, as we had a limited number of different samples
on which to train predictors. If the set of features that could be defined for a tar-
get sample in training is empty, which happened during evaluation of predictive
performance when holding out some features, we excluded that predictor from
the ensemble.

All predictions except for DNA methylation were at a 25-bp resolution. For
DNA methylation we made base predictions just at the positions of CpGs, but the
features based on other marks were still computed at a 25-bp resolution. We did
not make explicit predictions for positions within the first and last 10 kb of each
chromosome, and instead 0 was used as the signal value there except for DNA
methylation where it was 0.5.

For the primary imputation the tier assignments of marks determined which
marks were eligible to be used to impute other marks (Supplementary Fig. 2),
and we made predictions across chr1-22 and chrX. For the purpose of evaluating
imputation performance with subsets of features and marks unbiased by the deep
sample coverage of certain marks, we did a separate set of imputations using only
the seven samples with deep mark coverage. For this set of imputations we treated
the tier 1-3 marks in the same way, and the method could use any of the available
marks within these tiers to predict any other mark. For these evaluations we made
predictions only on chr10.

In order to handle the computational demands of training an ensemble of predic-
tors and then applying them to generate genome-wide predictions for more than
4,000 datasets we first wrote out to disk for the randomly sampled positions feature
instances for each observed mark and sample. The set of feature instances for a mark
and sample written out were sufficient to be used to train predictors based on the
sample for the goal of predicting the mark in any other sample. Depending on the
overall target sample, different subsets of the features would be used, consistent
with what is described above, but this step allowed significant reuse of computa-
tion and memory when imputing the same mark across multiple samples. Once
the training instances were written out, different predictors could be trained in
parallel. Applying the predictors to impute genome-wide values was parallelized
over different samples, marks and chromosomes. To more efficiently compute the
ordering of the locally nearest samples at each position when making genome-wide
predictions, a computationally demanding step, we leveraged information on the
ordering of the nearest samples at the previously considered position, which would
often be highly similar.

Comparison with linear regression, nearest neighbor and single sample train-
ing predictions. For the linear regression and nearest-neighbor comparison, we
limited the predictions to chr10. The linear regression was the weka (v.3.7.3)%!
implementation with a ridge regularization parameter set to 1. For the compari-
son with nearest-neighbor approaches we used up to the ten nearest neighbors
defined by H3K4mel and for both the local and global distance as defined above.
We selected H3K4mel as it was defined in all samples and associated with more
sample-specific patterns®%. For predicting H3K4mel we used H3K4me3 instead.
Similarly for the comparison with training based on a single nearest sample, we
selected the nearest sample based on global H3K4mel correlation, except using
H3K4me3 when predicting H3K4mel.

Gene annotations, expression, conserved elements. For gene annotation enrich-
ments we used a modified version of the GENCODE 10 gene annotations°? that
only included long transcripts as used in (Roadmap Epigenomics Consortium et al.,
2015)!°. For defining a set of expressed genes in each sample we combined the
protein coding genes and noncoding RNA sets selecting those genes that had an
RPKM > 0.5 as processed in (Roadmap Epigenomics Consortium et al., 2015)1°.
The evolutionarily conserved elements were the hg19 liftover of the SiPhy-pi con-
served elements previously reported333.

Signal heatmap clustering. The signal heatmaps were generated by first randomly
selecting 2,000 25-bp intervals in the genome, which form one dimension of each
matrix. The other dimension corresponds to different samples in which the mark
was observed. The ordering of elements in both dimensions of the matrix were
determined using the Matlab implementation of hierarchical clustering and opti-
mal leaf ordering® applied to the observed data. Correlation distance was used
except to cluster the rows for DNA methylation, H3K23me3, H4K5ac and RNA-seq
where Euclidean distance was used because of zero variance rows. The imputed
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data matrix is based on using the same ordering of rows and columns as generated
based on the observed data.

Chromatin states based on imputed data. Chromatin states were inferred on
the imputed data using ChromHMM?!. The data were binarized at a 200-bp
resolution by averaging the eight 25-bp intervals overlapping and using an
average signal threshold of 2. Two types of models were inferred. One model
used the 12 tier-1 and 2 marks across all 127 samples. The second model was
based on all tier 1-3 marks imputed in all the seven samples with deep mark
coverage, where we had a more confident imputation of the tier 3 marks. Both
posterior probabilities soft-assignments for each state and hard assignments
based on the maximum posterior were produced, but all the chromatin state
analyses were based on the hard assignments. Chromatin states based on the
observed data were obtained from (Roadmap Epigenomics Consortium et
al., 2015)'°.

The chromatin state assignment recovery based on the maps of a subset of
marks was determined using the EvalSubset command of ChromHMM?!. This
is similar to a procedure previously described?’, but based on hard assign-
ments.

Single mark peak calls. Macs2 (version 2.0.10) was used to call peaks on the
imputed signal data. The bdgpeakcall command was used to generate narrow-
Peaks whereas the bdgbroadcall command was used to generate gappedPeaks
with the *-¢’ cutoff flag was set to 2. These peak calls were compared to cor-
responding peak calls based on the observed data obtained from (Roadmap
Epigenomics Consortium ef al., 2015)!0 that were also generated based on
Macs2 but based on the callpeak command applied to aligned reads.

Comparison with GWAS analysis. We obtained the contents of the NHGRI
GWAS Catalog®® on September 12, 2014 through the UCSC Genome
Browser>®. We grouped entries into studies based on a unique combination
of PubMed ID and trait combination. We filtered the set of SNPs in each study
such that no two SNPs were within 1 Mb of each other on the same chromo-
some. We did this by ranking the SNPs in a study based on their P value sig-
nificance, and then filtering a SNP if it was within 1 Mb of any higher ranked
SNP that was not filtered. We tested the significance of the signal level for
observed and separately imputed data associated with a set of SNPs in a study
compared to all other GWAS catalog SNPs after the filtering using a Mann-
Whitney U Test as implemented in the Apache Commons Math 3.3 library.
For each mark and separately for the observed and imputed data, we computed
estimated false discovery rates (FDRs) at each P value threshold controlling for
testing multiple study and sample combinations. We did this by generating 100
random permutations of the study assignments among the set of filtered SNPs
across all studies, and then recomputed the significance of the signal associa-
tions. The FDRs corresponding to a P value were estimated by computing the
average number of sample-study combinations that reached that significance
threshold for a permuted catalog divided by the total number of combinations
that reached the significance threshold based on the actual catalog. If a less
significant P value had an initial lower FDR estimate than a more significant P
value, then the more significant P value also received that lower FDR estimate.
We displayed the first ten permutations generated in the P value comparison
plots. For the comparison of the most significant imputed sample with the
average signal, the FDR for the average signal needed only to control for testing
multiple studies as there were no sample-specific predictions. In this specific
comparison the FDR for the imputed data were determined as above, but by
only considering the most significant P value across all samples for a specific
study for both the actual and each randomized catalog.

Motif analysis. The motif analysis was conducted for each sample in which
there were DNase data available. The foreground for the enrichment was those
locations that had a DNase signal above 5 in the observed data and below 1
in the imputed data. The background for the enrichment was restricted to
all locations, which had an observed DNase signal above 5. An additional
analysis was done where the foreground was all locations that had observed
a DNase signal above 5, with a genome-wide background. The motif analysis
was conducted using a previously described software and assembled com-
pendium of motifs®’.
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