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Large-scale imputation of epigenomic datasets for 
systematic annotation of diverse human tissues
Jason Ernst1–5 & Manolis Kellis6,7 

With hundreds of epigenomic maps, the opportunity arises to 
exploit the correlated nature of epigenetic signals, across both 
marks and samples, for large-scale prediction of additional 
datasets. Here, we undertake epigenome imputation by 
leveraging such correlations through an ensemble of regression 
trees. We impute 4,315 high-resolution signal maps, of 
which 26% are also experimentally observed. Imputed signal 
tracks show overall similarity to observed signals and surpass 
experimental datasets in consistency, recovery of gene 
annotations and enrichment for disease-associated variants. 
We use the imputed data to detect low-quality experimental 
datasets, to find genomic sites with unexpected epigenomic 
signals, to define high-priority marks for new experiments and 
to delineate chromatin states in 127 reference epigenomes 
spanning diverse tissues and cell types. Our imputed datasets 
provide the most comprehensive human regulatory region 
annotation to date, and our approach and the ChromImpute 
software constitute a useful complement to large-scale 
experimental mapping of epigenomic information.

Genome-wide maps of epigenetic information, including histone 
modifications, DNA methylation and open chromatin, have emerged 
as a powerful means to discover tissue and cell type-specific putative 
functional elements and to gain insights into the genetic and epi-
genetic basis of disease1–9. Given the dynamic nature of epigenomic 
datasets across cell types and conditions, discovery power increases 
with broader coverage of diverse samples. However, owing to cost, 
time or sample material availability, it is not always possible to map 
every mark in every tissue, cell type and condition of interest. As a 
result, analyses that require completed sample-mark data matrices 
sometimes choose to restrict their comparisons to only those marks 
that have been commonly mapped across different samples, leading 
to exclusion of marks or samples that did not have full coverage. An 

additional, often underappreciated issue is that even when a mark 
is mapped in a sample, it is usually done with few (if any) replicates, 
which can confound biological comparisons owing to experimental 
variability. This situation is exacerbated when analyzing large com-
pendiums of datasets whose sheer number increases the likelihood 
that there will be outlier datasets of lower quality. Lastly, even for 
high-quality experiments, robustness of the resulting signal level 
estimates may be reduced because of insufficient sequencing depth, 
especially for broadly distributed marks that span a large fraction 
of the genome.

To address these challenges, we developed ChromImpute for 
large-scale imputation of epigenomic datasets. ChromImpute uses 
a compendium of epigenomic maps (such as those generated by the 
NIH Roadmap Epigenomics and ENCODE projects2,10) to gener-
ate genome-wide predictions of epigenomic signal tracks (such as 
histone marks, DNA accessibility, DNA methylation, RNA-seq or 
any coordinate-based signal track). We used ChromImpute to pre-
dict signal tracks of histone modifications, DNA accessibility and 
RNA-seq at 25-base-pair (bp) resolution and whole genome bisul-
fite DNA methylation data at single-nucleotide resolution (we refer 
to all of these data types as ‘marks’ for simplicity). We annotated a 
total of 127 reference epigenomes, including 111 generated by the 
Roadmap Epigenomics project10 and 16 generated by the ENCODE 
project2,3. These span diverse cell types and tissues (we refer to them 
as ‘samples’ for simplicity, even though some reference epigenomes 
were based on multiple independent samples10).

We provide a systematic evaluation of the imputed data and dem-
onstrate that the imputed data for a mark in a sample better matches 
the corresponding observed data than the observed data from any 
other sample. We also demonstrate how comparison of observed 
data and imputed data provides a state of the art data quality control 
metric that complements and surpasses existing methods. Even when 
a mark has been experimentally profiled in a sample, we show that 
imputed data are generally more consistent, robust and accurate, as 
the data leverage information from hundreds of datasets and thus 
are resilient to noise arising in individual experiments. The ‘prior 
expectation’ of a genome-wide signal provided by the imputed data 
can also be used in conjunction with observed datasets for inference 
of surprising signal locations in high-quality samples. We also use 
the imputation quality of subsets of marks to provide recommen-
dations and insights into experiment prioritization. Lastly, we use 
a compendium of 12 imputed marks in 127 reference epigenomes 
to predict and annotate a set of 25 chromatin states, providing the 
most comprehensive annotation of epigenomic state information in 
the human genome to date.
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Figure 1  Application and method overview. (a) Matrix of observed and imputed datasets across 127 reference epigenomes (‘samples’), including 111 
from the Roadmap Epigenomics project (rows 1–111) grouped and colored by cell/tissue type, and an additional 16 from ENCODE (rows 112–127), 
with reference epigenome identifier (EID) and short sample/tissue description. Epigenomic marks (top) are grouped by tiers 1–3 plus RNA-seq and DNA 
methylation (DNA methyl), based on experimental coverage and imputation strategy. Black dotted arrows on the top denote E017 datasets shown in b 
(horizontal arrow), and H3K36me3 datasets shown in c (vertical arrow), illustrating the two dimensions of correlations used in ChromImpute and shown 
in d. PB, peripheral blood; Mesench., Mesenchymal; cult cl, cultured cells. (b) Correlation between epigenomic marks in the same sample, one of the 
two classes of features used for epigenome imputation. Datasets from sample E017 are shown, illustrating their highly correlated nature, comparing the 
observed signal for H3K4me1 from E017 (gray), the imputed data (red), which was predicted without using the observed data, and the observed tracks 
for other marks (blue), ordered based on their correlation with the H3K4me1. Imputation of H3K4me1 in E017 (red) does not use the observed data 
(gray), and instead uses the other samples to learn relationships between H3K4me1 and other marks. DNA methylation values below the horizontal line 
represent missing data. For the primary imputation of H3K4me1, not all marks shown were used, as only tier 1 marks are used to impute tier 1 marks. 
(c) Multiple signal tracks for H3K36me3 across samples illustrate the highly correlated nature of a given mark across samples, exploited in the second 
class of features used for epigenome imputation. This example uses the same region as used in b to compare the observed signal for H3K36me3 in 
E017 (gray), H3K36me3 in several other samples (blue), which constitute the basis for highly informative features for H3K36me3 imputation in E017 
(red). Observed tracks (blue) are ordered by their global correlation to the observed H3K36me3 signal in E017, though ChromImpute did not have this 
information when imputing H3K36me3 in E017, and instead determined sample similarity based on other marks, both globally and locally at each 
position, and then used the H3K36me3 signal in up to ten most-proximal samples for each definition of similarity to compute individual features for 
each predictor of the ensemble (d, right). (d) Ensemble strategy for signal track imputation using features that exploit correlations between marks in the 
same sample (left) and correlations between samples for a given mark (right). We assume that no information is available for the target mark in the target 
sample (gray targets). Thus, we learn relationships between marks (left side) in other samples (column of E1 sample is not used) and learn relationships 
between samples (right side) using other marks from which we then compute same-mark features. The ensemble predictor that combines features across 
marks (b) and across samples (c) is learned only in other samples (top), and the marks in the target sample are used only during the actual application of 
the trained ensemble predictors to compute the imputed signals.
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enomes, including 111 profiled by the NIH Roadmap Epigenomics 
project10 and 16 profiled by the ENCODE project2,3 (Fig. 1a). These 
span diverse tissues and cell types, including embryonic stem cells 
(ESCs), induced pluripotent stem cells (iPSC), ESC-derived cells, blood 
and immune cells, skin, brain, adipose, muscle, heart, smooth muscle, 
digestive, liver, lung and others.

Only five ‘core’ histone modification marks were experimentally pro-
filed in all 127 reference epigenomes. These are promoter-associated 
H3K4me3, enhancer-associated H3K4me1, Polycomb repression-asso-
ciated H3K27me3, transcription-associated H3K36me3 and heterochro-
matin-associated H3K9me3. Varying subsets of 34 marks were profiled 
in different epigenomes, including 30 histone modifications (11 histone 
methylation marks, 18 histone acetylation marks and H3T11ph), histone 
variant H2A.Z, DNA accessibility (profiled by DNase I hypersensitivity), 
DNA methylation data (profiled by Whole-Genome Bisulfite Sequencing, 
WGBS) and RNA-seq data.

Based on these experimentally profiled (‘observed’) datasets, we 
imputed the 31 marks observed in at least two epigenomes in all 127 
epigenomes, and the three marks mapped in only one epigenome in the 
remaining 126 epigenomes. In total we generated 4,315 datasets based on 
imputation, of which only 1,122 (26%) were also experimentally mapped 
and 3,193 (74%) were available only as imputed data. Signal tracks for 
all marks were imputed at 25-bp resolution (121 million predictions per 
track) except for DNA methylation, which was imputed at single-nucle-
otide resolution for each of 28 million CpGs. Across all marks, samples 
and positions, we generated a total of 526 billion predicted signal values.

We categorized the 34 epigenomic marks into four classes according to 
the number of samples in which they were experimentally profiled and 
our imputation strategy (Supplementary Fig. 2).

1. Tier 1 marks were mapped broadly across samples, were used to impute 
all other datasets and were imputed using only tier 1 marks. They 
consist of H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3, 
H3K27ac, H3K9ac and DNA accessibility.

2. Tier 2 marks were mapped broadly only in ENCODE samples, were 
used to impute tier 2 and tier 3 marks, and were imputed using only tier 
1 and tier 2 marks. They consist of H3K4me2, H3K79me2, H4K20me1 
and H2A.Z.

3. Tier 3 marks had limited coverage, were used only to impute tier 3 
marks and were imputed using all three tiers. They consist of the 
remaining 20 histone modification marks.

4. DNA methylation and RNA-seq datasets were treated separately as 
a design choice due to their very distinct natures. RNA-seq datasets 
were imputed using only tier 1 marks and other RNA-seq datasets and, 
similarly, DNA methylation datasets, only using tier 1 marks and other 
DNA methylation datasets.

This tiered approach for histone marks and DNA accessibility datasets 
enabled us to limit potential biases resulting from the lower number of 
samples for tier 2 and tier 3 marks (reducing only minimally the informa-
tion available for making predictions).

Imputed datasets capture missing marks effectively
As an initial control, we assessed by visual inspection the level of 
similarity between pairs of matching imputed and observed datasets, 
using nine randomly selected 200-kb regions and 2,000 randomly 
selected 25-bp regions. For each of the nine broad regions, we ran-
domly selected one sample in which the mark was also experimentally 
profiled and visualized imputed and observed tracks in detail (Fig. 2a 
and Supplementary Fig. 3). For the 2,000 samples, we generated a 
dense heatmap showing the observed and imputed mark signal across 

Results
ChromImpute method and previous work on imputation
Imputation has been previously explored in a number of bioinformatics 
settings. For microarray experiments, missing gene expression values 
have been predicted for specific genes in specific experiments11. For 
genome-wide association studies (GWAS), missing genotype values 
are routinely predicted for single-nucleotide polymorphisms (SNPs) 
not directly assayed, by exploiting common haplotype structure12. For 
epigenomic datasets, prediction of both DNA methylation and histone 
modification datasets has been undertaken from DNA sequence informa-
tion13–15, but the static nature of genome sequence limits the ability to 
generate cell-type-specific predictions for samples not previously used 
for training, as the motifs driving a given mark frequently differ across 
samples. Specifically for DNA methylation, imputation has been under-
taken using sequence-based features and histone modification data from 
one sample16,17, lower resolution assays in conjunction with sequence 
information and other annotations for predicting high-resolution DNA 
methylation18, or assumed phylogenetic relationships between cell 
types19. For histone modifications and other chromatin marks, methods 
have been developed by us and others, to infer chromatin states based on 
multiple marks, even in cases with missing data20–22, but these do not try 
to infer the actual signal for the missing marks. Several other methods 
have been developed to model correlations of histone marks with expres-
sion or with other marks in a single sample23–26, which have sometimes 
been leveraged for imputation on a limited scale, but have not considered 
across-sample information. In practice, studies interested in a given cell 
type sometimes use data from a related cell type, which can be viewed as 
one simple approach to imputation.

Here, we take an ensemble regression-based approach to epigenomic 
imputation. We impute each target mark in each target sample sepa-
rately, by combining information from large numbers of datasets that 
were experimentally determined, but without using any data for the 
target mark in the target cell type (Fig. 1a and Supplementary Fig. 1). 
We leverage two classes of features (Fig. 1d).

1. Same-sample (different-mark) information (Fig. 1b): The first class 
of features uses information from the signal of other marks mapped 
in the target sample, both at the target position and at neighboring 
sites.

2. Same-mark (different-sample) information (Fig. 1c): The second 
class of features uses information from the signal of the specific 
mark of interest at the target position in the most similar samples. 
Similar samples are defined based on similarity with the signal of 
marks that have been mapped in the target sample both locally and 
globally. The features in this class are effectively predictions that 
could be made by a K-nearest neighbor method for various values 
of K and distance functions.

As no training data are available for the target mark in the target 
sample, we learn the relationships between the features and the target 
mark using other samples that contain the target mark. We use regression 
trees27, as they can handle nonlinearities (including the constraint that 
signal values are non-negative), they support combinatorial interactions 
among features, and they are relatively fast to train. The prediction for 
each target mark in each target sample is based on an ensemble predictor 
that averages the values resulting from regression trees trained on each 
sample in which the target mark is available, thus reducing the impact of 
biases from any one individual predictor.

Imputation of 4,315 datasets in 127 reference epigenomes
We applied ChromImpute to a compendium of 127 reference epig-
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the visualizations provided in this paper, 
imputed and observed tracks are provided for 
the entire genome through public track hubs 
on the WashU Epigenome Browser (http://
epigenomegateway.wustl.edu/browser/)28 and 
the UCSC Genome Browser29.

We also assessed the ability of ChromImpute 
to predict missing marks using seven quanti-
tative metrics: (i) the genome-wide correla-
tion between observed and imputed data 
(“GWcorr,” Fig. 2c); (ii) the overlap between 
imputed and observed datasets in the top 
1% of the 25-bp bins with the highest signal 
(“Match1”); (iii) the percentage of the top 1% 
observed in the top 5% imputed 25-bp bins 
(“Catch1obs”); (iv) the percentage of the top 
1% imputed in the top 5% observed 25-bp bins 
(“Catch1imp”) (Supplementary Figs. 5–7); (v) 
the recovery of the top 1% observed and (vi) 
1% imputed 25-bp bins based on the full range 
of signal of the other using the area under the 
curve (AUC) of a receiver operating character-
istic (ROC) curve (“AucObs1” and “AucImp1,” 
Supplementary Figs. 5–7); (vii) and the AUC 
recovery of bases covered by observed peak 
calls based on the full range of signal of the 
imputed data (“CatchPeakObs,” Fig. 2d and 
Supplementary Figs. 6–7). These 1% and 5% 
percentages captured the diversity of chro-
matin states for each mark (Supplementary 
Fig. 8) and captured the majority of high-
signal locations (Fig. 2b and Supplementary 
Fig. 4; see also genome-wide signal distribu-
tions discussed below). For DNA methylation, 
we used GWcorr and “Methyl25,” a previously 
suggested concordance measure that consid-
ered two DNA methylation values to be in 
agreement if they were within 0.25 of each 
other30, as focusing on the top few percent of 
signal is less meaningful (as the vast majority 
of CpG dinucleotides in the human genome 
are highly methylated).

To provide perspective on the performance 
of ChromImpute in each metric, we com-
pared it to two stringent baselines. The first 
baseline, ‘BestSingle’, predicts a missing mark 
based on the signal of the most similar experi-
mental dataset for the target mark, according 
to the specific metric measured across any 
other sample. This baseline is unrealistic as 
an imputation method because the most 
similar experiment is not known in advance, 
and is not available to ChromImpute or to 
any prediction method. The second baseline, 
‘SignalAvg’, predicts the average signal of the 
target mark across all other samples and can 

be thought of as an alternative imputation approach.
ChromImpute showed strong recovery of observed datasets, both in 

its overall performance, and relative to both stringent baselines. For the 
GWcorr metric, ChromImpute showed 0.68 correlation on average per 
mark (vs. 0.50 for both BestSingle and SignalAvg, Fig. 2c), outperform-

every sample in which both were available (Fig. 2b and Supplementary 
Fig. 4). Both visual comparisons showed strong agreement between 
observed and imputed signal, successfully recovering epigenomic 
features at high resolution, across broad regions (Fig. 2a and 
Supplementary Fig. 3c) and in a tissue-specific way (Fig. 2b). Beyond 
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Figure 2  Imputed data are a close match to observed datasets. (a) Visualization of one of the randomly 
selected 200-kb regions illustrates high-resolution concordance between observed (blue) and imputed 
(red) signal tracks. Imputed tracks are generated at 1-bp resolution for DNA methylation and 25-bp 
resolution for all other marks and trained without using the observed track. For each mark (row), we 
show a randomly selected sample (EID from Fig. 1a), which also contains observed data for comparison 
(light purple entries in Fig. 1a). This region was chosen among nine randomly selected 200-kb regions 
(supplementary Fig. 3) as the one with the most signal across all marks. Larger 1.5 Mb context, and 
example 5-kb close-up are shown in supplementary Figure 3c, illustrating concordance at multiple 
resolutions. (b) Visualization of 2,000 randomly selected 25-bp regions (columns), and their signal 
(yellow, high; blue, low) across up to 127 samples (rows, colored as in Fig. 1a), for tier 1 marks (yellow 
sidebar) and RNA-seq and DNA methylation (green sidebar) (tier 2 and tier 3 marks are shown in 
supplementary Fig. 4). Rows and columns are clustered for each mark independently to highlight 
structure based on observed data (top), and imputed data (generated without using the corresponding 
observed dataset) are shown below, in the same order, showing clear similarity. WGBS, whole genome 
bisulfite sequencing. (c) Quantitative comparison of observed signal correlation for ChromImpute (red), 
averaging the mark signal from all other samples (green), and the best-case for selecting a single sample 
(blue), which is not a realistic method when the target mark signal is not known, as it would be needed 
to determine the single-best sample. Average correlation is computed based on all samples for which 
both observed and imputed signals are available. ChromImpute shows consistently higher correlation of 
observed signals than the two alternate methods (including the unrealistic best case) for all marks. For 
additional comparisons see supplementary Figures 5–7. (d) Average AUC for recovering bases covered 
by a narrow peak call on observed data10 when ranking based on predicted signal.
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ing BestSingle for 91% of datasets and SignalAvg for 99% of datasets 
per mark on average. ChromImpute showed AUC = 0.95 recovery for 
AucObs1 (vs. 0.84 and 0.88, Supplementary Fig. 5) on average per 
mark, and AUC = 0.96 for CatchPeakObs (vs. 0.83 and 0.88) (Fig. 2d). 
For the Methyl25 metric, ChromImpute outperformed SignalAvg 97% 
of time, and BestSingle, 76% of the time.

We also compared ChromImpute to several additional imputation 
approaches. First, we implemented ChromImpute-LR, using the same 
ensemble training strategy but linear regression instead of regression 
trees to combine features. ChromImpute had overall similar or better 
performance than ChromImpute-LR for the tier 1 and 2 marks and much 
better performance for DNA methylation, although ChromImpute-LR 
showed somewhat better performance for some tier 3 marks, which had 
fewer training datasets available (Supplementary Fig. 9). Second, for 
tier 1 histone marks in ESCs and iPSCs, we compared ChromImpute to 
a predictor based on averaging of increasingly larger number of these 
near-replicate datasets (Supplementary Fig. 10). Predictive power 
increased by averaging more replicates, but ChromImpute showed 
better predictive power than ten near-replicates for some marks, and 
three near-replicates for all marks (Supplementary Fig. 10). Third, 
ChromImpute also outperformed nearest-neighbor predictors of a 
mark based on local and global distance, a predictor trained on only 
one sample instead of the full ensemble (Supplementary Fig. 9) and a 
predictor based on averaging active marks in the same sample to predict 
other active marks and likewise for repressive marks (Supplementary 
Fig. 11), in each case supporting our imputation strategy.

Increased robustness and annotated feature recovery
Although the previous analyses demonstrated that the imputed datasets 
provided a reasonable approximation to observed datasets, and thus can 
be beneficial when observed data are not available, we next investigated 
whether imputed datasets also have distinct advantages that make them 
valuable even if observed datasets are available. Two potential reasons 
may lead to advantages for imputed datasets: (i) imputed datasets are 
based on combining information from many experiments and thus 
have the potential to be more robust to experimental noise and other 
confounders than the observed data; (ii) by combining relevant infor-
mation from many related experiments, imputed data can achieve a 
higher ‘effective’ sequencing depth, and thus potentially a higher signal-
to-noise ratio.

We used the property that promoter-associated H3K4me3 frequently 
localizes near transcription start sites (TSS) and that transcription-
associated H3K36me3 frequently localizes in gene bodies. We defined 
two metrics that quantify the extent to which the strongest H3K4me3 
signal (at 25-bp resolution) localizes within 2 kb of annotated TSS 
(“PromRecov,” Fig. 3a) and the strongest H3K36me3 signal localizes 
in gene bodies (“GeneRecov” Fig. 3b), using AUC for the portion of 
the ROC curve that has a 5% false-positive rate or less (we primarily 
focused on this metric instead of the full AUC as we expected many 
annotated locations not to be marked by the observed or imputed 
data in any one sample, but saw similar results based on the full AUC 
(Supplementary Fig. 12a,b)).

We found that imputed data showed better annotation agree-
ment than observed data for every dataset, often by a large margin 
(Supplementary Fig. 13). In fact, the worst-performing imputed 
H3K4me3 dataset performed better than 96% of observed H3K4me3 
datasets, and the worst-performing imputed H3K36me3 dataset 
performed better than 91% of observed datasets in the evaluations 
(Fig. 3a,b). Recovery of gene bodies for a few of the H3K36me3 
observed datasets was only marginally above random, whereas for 
imputed data, recovery was consistently high. As these results are based 

only on the rank ordering of signal values, any normalization strategy 
that preserves the rank ordering (e.g., quantile normalization31) would 
not change these results. We also observed better overall agreement 
with annotated features when considering peak calls instead of signal 
level (Supplementary Fig. 14).

Additionally, imputed data showed a more robust and consistent sig-
nal profile than observed data. Observed H3K4me3 signal proximal to 
all TSSs showed up to a 95-fold variation between samples (Fig. 3c), 
and observed H3K36me3 showed up to a sevenfold variation in gene 
bodies (Fig. 3d). Suggesting that experimental variability, rather than 
biological differences, indeed underlies some of these differences, two 
fetal brain samples (E081 and E082) showed large heterogeneity in their 
aggregate profiles for H3K4me3 and H3K36me3. E081 showed very 
flat distributions (Fig. 3c,d), whereas E082 and the imputed data for 
E081 and E082 all showed much more recognizable distributions (Fig. 
3c,d). Consistent with experimental confounders, these E081 datasets 
showed relatively poor scores in both the PromRecov and GeneRecov 
metrics (Fig. 3a,b).

Imputed marks also showed higher consistency than observed marks 
in their genome-wide signal distribution (Supplementary Fig. 15). For 
example, for the observed datasets of H3K36me3 in the two fetal brain 
samples (E081 and E082), there was an 11.6-fold difference between 
the amount of the genome that had signal values ≥ 3, whereas imputed 
data showed only a 1.4-fold difference.

We also used the 28 histone and DNA accessibility marks that were 
mapped in two different ESC lines (H1 and H9) to compare near rep-
licates for observed and for imputed datasets. We expected that for 
high-quality datasets, each mark mapped in H1 should show a higher 
correlation with the corresponding mark in H9 than with other marks 
in H9 (and conversely for H9 marks). Indeed, this property held more 
frequently for imputed data versus observed data (Supplementary 
Fig. 16), once more supporting the higher quality of imputed datasets. 

Imputed data captured dynamics and sample relationships
To study whether imputed data can capture dynamic epigenomic 
information across cell types, we evaluated our PromRecov and 
GeneRecov metrics for tissue-restricted annotations, by focusing spe-
cifically on a set of genes that were expressed in the corresponding 
samples (Supplementary Figs. 12c,d and 13c,d). Imputed data con-
tinued to strongly outperform observed data for the set of expressed 
genes, with all but one imputed dataset for H3K4me3 showing higher 
PromRecov, and all but one imputed datasets for H3K36me3 showing 
higher GeneRecov.

We also compared the ability of imputed and observed data to recover 
expressed genes as a function of the number of samples in which they 
were expressed (Supplementary Fig. 17). Recovery of both TSS-
proximal regions and gene bodies increased greatly with the number 
of samples in which a given gene is expressed for imputed marks (as 
expected given the multiple informant samples for each mark) and 
for observed marks (suggesting that genes detected as more broadly 
expressed show greater agreement with histone modification marks 
even for observed data). Notably, imputed H3K4me3 showed higher 
PromRecov independent of how restricted the expression was to certain 
samples, even for TSS regions of genes expressed in a single sample. 
For H3K36me3, observed marks showed a modestly higher recovery 
of gene bodies for genes expressed in only six samples or fewer (3% of 
expressed genes in a sample, on average). However, for the remaining 
genes expressed in larger numbers of samples, imputed datasets con-
sistently outperformed observed datasets.

For all tier 1–3 marks, we directly compared the correlation 
between observed gene expression levels and the signal data for both 
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different-group sample pairs (excluding the heterogeneous ‘ENCODE’ 
and ‘Other’ groups), based on the relative genome-wide pairwise cor-
relation, evaluated as the AUC for both observed and imputed sig-
nal (Fig. 3f). Imputed data consistently outperformed observed data, 
showing an average AUC of 0.92 versus 0.79 for observed data. The 
increase in classification power was most pronounced for H3K4me3, 
H3K36me3, H3K27me3 and H3K9me3, which are generally considered 
less cell-type specific (AUC = 0.93 vs. 0.70).

These results also held for sample group classification based on his-
tone mark peak call similarity (Supplementary Fig. 20), when trying 
to distinguish pairs of samples having the same anatomy annotation 
from those that have a different one10 (with all marks except DNA 
methylation showing increased accuracy for imputed data compared 
to observed data, Supplementary Table 1 and Supplementary Fig. 20), 
and for higher-resolution distinctions beyond the tissue group level, as 
ChromImpute predictions showed higher correlation with correspond-
ing observed data than predictions obtained by averaging all other 
same-group experiments (Supplementary Fig. 21). We reasoned that 
perhaps a weighted average of observed and imputed data may further 

observed and imputed marks (Supplementary Fig. 18). For nearly 
all positively correlated marks, imputed signal showed a greater posi-
tive correlation with gene expression than observed signal, both in 
TSS-proximal regions (Supplementary Fig. 18a) and in gene bod-
ies (Supplementary Fig. 18b). For negatively correlated marks, 
observed data showed greater negative correlation with expression 
than imputed data, but this higher negative correlation was asso-
ciated with lower-quality observed datasets, and the difference 
was reduced when focusing only on higher-quality observed data, 
both in TSS-proximal regions and in gene bodies (Supplementary 
Fig. 18c,d).

We also evaluated the ability of both imputed and observed datas-
ets to capture the relationships between tissues and cell types based on 
genome-wide correlation analysis between pairs of datasets (Fig. 3e,f 
and Supplementary Fig. 19). Specifically, we compared the imputed 
and observed data for their ability to group samples in accordance with 
their tissue group (defined in ref. 10 and shown in Fig. 1a of this paper) 
based on the correlation of individual marks (Fig. 3e and Supplementary 
Fig. 19). We found the imputed data showed a correlation matrix with 
a strongly pronounced block structure, cor-
responding to the biological groupings of cell 
types and tissues. This was substantially weaker 
in observed datasets, suggesting imputed data 
better captured sample relationships.

To quantify this difference, we evaluated the 
ability of each tier 1 mark, DNA methylation 
and RNA-seq to distinguish same-group versus 
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Figure 3  Imputed data shows higher promoter/
gene recovery, robustness and biological group 
recovery. (a,b) Quantitative comparison of 
observed (blue) and imputed (red) data in their 
recovery of annotated promoters (a) and gene 
bodies (b), based on the area under the ROC 
curve up to a 5% false-positive rate (y axis) for 
H3K4me3 signal recovery of locations within 2 kb 
of TSS (a) and H3K36me3 signal recovery of gene 
bodies (b). Arrows indicate two fetal brain samples 
(E081 and E082) with very different values in the 
observed data, which show much higher (and more 
consistent) recovery for imputed data. FPR, false-
positive rate. (c,d) Comparison of aggregate signal 
for imputed (red) and observed (blue) datasets 
based on –log10 P value of H3K4me3 surrounding 
the TSS (c) and H3K36me3 in gene bodies (d). 
Imputed data show a substantially more consistent 
profile across all datasets, and in particular for 
the two fetal brain samples (E081, E082), which 
show substantial differences in the observed 
data. (e) Pairwise comparison of genome-wide 
signal correlation for all samples using observed 
(top) and imputed (bottom) data for H3K4me1, 
H3K27me3 and DNase (additional marks shown 
in supplementary Fig. 19), with samples ordered 
and colored as in Figure 1a (left sidebar). Imputed 
datasets better capture biological relationships 
between samples than observed datasets, with 
their correlation structure clearly delineating 
pluripotent cells, immune cells, adult brain and 
multiple tissue groups (Fig. 1a), whereas observed 
datasets are much less correlated even for highly 
similar samples. (f) Area under the ROC curve 
for classifying whether two different pairs of experiments belong to the same group when ranking the pairs based on their correlation. A value of 0.5 could be 
achieved by random guessing and a value of 1.0 is the maximum possible score. The ‘Other’ and ‘ENCODE’ groups were excluded from this analysis as were 
imputed pairs that were not present in the observed data. This shows quantitatively that the relative similarity of imputed data sets is more consistent with the 
biological groupings of the samples.
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improve classification power, but we did not 
see substantial improvement in a combination 
approach relative to just using the imputed 
data, except for DNA methylation where a 
balanced combination showed the highest 
classification power (Supplementary Fig. 22).

Imputed data improved GWAs 
enrichments
As epigenomic maps have recently emerged 
as an unbiased approach for discovering dis-
ease-relevant tissues and cell types3,32, we also 
evaluated the impact of epigenome imputation 
on the interpretation of trait-associated vari-
ants from GWAS. We quantified the enrich-
ment (positive or negative) of trait-associated 
variants from the National Human Genome 
Research Institute (NHGRI) GWAS catalog33 
in both observed and imputed datasets for each 
tier 1 mark. We evaluated enrichments both 
in aggregate across all studies, based on area 
under an ROC curve up to a 5% false-positive 
rate (AUC5%) for the signal level recovery 
of trait-associated SNPs, and at the level of 
individual studies, based on mark signal rank 
differences between each study’s SNPs and all 
other SNPs in the GWAS catalog. We evaluated 
both the number of studies for which there was 
a significant signal rank difference in at least 
one sample, and the total number of study-
sample pairs that were significant, at varying P 
value thresholds. We then compared both the 
number of significant studies and the number 
of significant pairs to the numbers obtained 
for randomized versions of the GWAS catalog, 
which also enabled us to obtain a false-discov-
ery rate estimate for each P-value threshold 
(Supplementary Table 2).

For all tier 1 active marks, imputed data 
resulted in substantially greater recovery of 
SNPs in the GWAS catalog than the observed 
data (Supplementary Fig. 23), and more sig-
nificant enrichments for both the number 
of studies and the number of study-sample 
pairs, across all tested significance thresholds 
(Fig. 4a and Supplementary Figs. 24 and 25). 
In addition, the imputed data yielded a stron-
ger enrichment for each enriched study-sample 
pair in the large majority of cases (Fig. 4b and 
Supplementary Fig. 26). We confirmed that 
the actual GWAS catalog yielded substantially 
more significant associations than randomized 
versions, for both the observed and imputed 
data across a range of P-value significance 
thresholds (Fig. 4a and Supplementary Figs. 
24 and 25). Imputed data performance was 
substantially higher than that of the average mark signal across all avail-
able samples (Supplementary Fig. 24b), emphasizing that the higher 
performance was not simply due to averaging multiple samples. We also 
confirmed that the samples with the strongest positive enrichments for 
a given study were generally biologically relevant for active marks. For 

H3K27ac, for example, we found that liver was the most enriched sample 
for various cholesterol phenotypes, immune-related cells for various 
immune-related disorders, colonic mucosa for ulcerative colitis. Many 
additional biologically meaningful enrichments were found for diverse 
studies and cell types (Fig. 4c–f and Supplementary Table 2).

Positive enrichment with imputed H3K27ac signal Pos. enrich. with observed H3K27ac signal
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Figure 4  Overlap with trait-associated genetic variants from GWAS. (a) (Left) The x axis shows 
the number of GWAS in which there was at least one sample for which the H3K27ac signal was 
significantly enriched at significance level indicated on the y axis using a Mann-Whitney U Test. This is 
shown for the observed data (blue), the imputed data restricted to the 98 samples with observed data 
(red), and the observed and imputed data based on ten randomizations of the GWAS catalog. (Right) 
The same as on left, but counting study-sample combinations as opposed to just studies. (b) A scatter 
plot showing the –log10 P value computed for each study-sample combination based on the observed 
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imputed data. Additional marks can be found in supplementary Figures 24–26. (c–f) Enrichment 
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enrichment for at least one reference epigenome (columns) based on H3K27ac imputed data (c,e) and 
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sample abbreviation and PubMed identifier (PMID). Only samples that showed the highest-significance 
positive enrichment for at least one study are shown. Studies in c,d were significant (–log10 P ≥ 3.5) for 
both observed and imputed data. Top three rows show studies with broad enrichment across samples. 
(e,f) Same enrichments for studies that were only significantly enriched using imputed (e) or observed 
(f) H3K27ac signal. Asterisks denote H3K27ac signal tracks that exist only as imputed data. Expanded 
enrichments for all samples, all tier 1 marks and additional GWAS are in supplementary table 2. SLE, 
systemic lupus erythematosus; ADH, attention deficit hyperactivity; ALL, acute lymphocytic leukemia; 
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These metrics are based on the proportion of reads falling in enriched 
regions as determined by various methods (signal proportion of tags 
(SPOT)34, pre-binned regions enriched based on a Poisson distribution10 
and FindPeaks35) and signal correlations between forward and reverse 
reads (normalized strand correlation (NSC) and relative strand cross-
correlation (RSC))36.

Traditional QC metrics indeed flagged several worst-ranked H3K4me3 
and H3K36me3 datasets, but failed to detect several cases, especially for 
lower read depths. This was more pronounced for H3K36me3, where 
two metrics (NSC, RSC) failed to detect the majority of low-GeneRecov 
datasets, and several datasets (E104, E022, E087, E109) were not 
detected as problematic by any of the traditional QC metrics. A deeper 

These results help validate the biological relevance of imputed datasets, 
based on an orthogonal annotation source, and help illustrate imputed 
datasets as a potentially useful resource for interpreting GWAS results.

Imputed datasets are informative for quality control
We next studied whether discrepancy between imputed and observed 
datasets is indicative of lower-quality experiments and can be used as a 
quality control (QC) metric. We ranked all H3K4me3 and H3K36me3 
datasets based on PromRecov and GeneRecov scores, respectively, 
providing an independent benchmark informative of dataset quality 
(Fig. 5a). We then compared several QC metrics previously applied to 
these datasets10, based on their ability to flag the worst-ranked datasets. 
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Figure 5  Low similarity between imputed 
and observed data reveals low-quality 
datasets. (a) Comparison of QC metrics 
(columns) for the ten datasets (rows) 
showing lowest agreement with gene 
and promoter annotations (Fig. 3a,b), 
based on H3K4me3 PromRecov (top) 
and H3K36me3 GeneRecov (bottom). 
Each entry shows rank (out of 127) for 
GeneRecov/PromRecov, read depth and 
each QC metric (Poisson statistic, Signal 
Proportion of Tags (SPOT), FindPeaks, 
Normalized and Relative Strand 
Correlation between forward and reverse 
strands (NSC and RSC)), and similarity 
between imputed and observed data 
(Match1 and GWcorr). Orange-shaded 
EIDs denote the five worst-agreement 
datasets from b. Data sets with the 
same read depth (a result of highly 
sequenced datasets being previously 
downsampled to the same number of 
reads10) are given the same expected 
rank if ties were broken randomly. 
Most-problematic datasets (based on 
lack of gene or ±2 kb TSS annotation 
recovery) are sometimes missed by 
traditional QC measures but consistently 
show low imputation agreement. (b) 
Distribution of agreement between top 
1% observed signal and top 1% imputed 
signal locations for H3K4me3 (top) and 
H3K36me3 (bottom), highlighting five 
worst-similarity (orange) and five highest-
similarity (green) datasets. (c) Observed 
(blue) and imputed (red) signal tracks 
for worst-similarity (orange) and best-
similarity (green) datasets for H3K4me3 
(top) and H3K36me3 (bottom) for the 
entire chromosome 10 (0–135 Mb). 
Datasets with the lowest agreement have 
a relatively flat signal, suggesting that 
when observed and imputed datasets 
disagree most, it is usually the observed 
datasets that are of lowest quality. 
(d) Aggregation of observed signal for 
H3K4me3 surrounding the TSS (top) 
and H3K36me3 in gene bodies (bottom) 
for the five best-agreement (green) and 
worst-agreement (orange) datasets, 
highlighting the unusual profiles of some 
worst-agreement datasets, suggesting they 
are of lower quality, even though they were 
not flagged by traditional QC metrics.
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Imputation feature usage varies across marks
We next sought to gain information about the utilization of different 
marks and features for imputing datasets. We first studied the frequency 
with which each feature was utilized in our regression trees, at the root 
(Supplementary Fig. 30a) or at any position (Supplementary Figs. 30b 
and 31) when it was available. We did this both for the primary imputa-
tion analyzed above, treating tier 1, tier 2 and tier 3 marks separately, 
given their differences in coverage, and another imputation restricted 
to the seven samples with deep coverage of many marks9,10, treating all 
tier 1–3 marks uniformly, given their similar coverage. 

For nearly all acetylation marks, the most frequent feature at the root 
was another acetylation mark at the same genomic position in the same 
sample, reflecting the highly correlated and dynamic nature of acetyla-
tion marks. For histone methylations, DNA accessibility, RNA-seq and 
DNA methylation, the most informative feature for the root was more 
often based on the same mark in a set of nearest K samples, consistent 
with their more stable nature across cell types.

When considering any position in the regression tree, the most fre-
quently used features were from other marks in the same sample and the 
same position, although all positions surrounding the target genomic 
location were used quite often (Supplementary Fig. 31). DNA acces-
sibility was less frequently used at the exact target position compared 
to histone mark features (Supplementary Fig. 31), reflecting the slight 
displacement of nucleosomes relative to open-chromatin regions, and 
thus the offset of histone modification marks relative to DNA accessibil-
ity peaks.

Chromatin state annotation using many imputed marks
Given the importance of chromatin mark combinations for distinguish-
ing biologically meaningful features and different classes of regulatory 
elements, we used ChromHMM20,21 to discover chromatin states based 
on imputed marks. Chromatin state analysis based on observed data 
in the Roadmap Epigenomics project primarily focused on the five 
marks common to all 127 samples (H3K4me1, H3K4me3, H3K36me3, 
H3K27me3 and H3K9me3) or only six marks (with H3K27ac) for 98 
samples10, with the number of samples rapidly decreasing as addi-
tional marks are considered due to missing datasets. ChromHMM 
explicitly handles missing data, but absence of a particular mark can 
result in dramatic reduction in the genomic coverage of correspond-
ing chromatin states in the samples that are missing a defining mark 
(e.g., a DNA accessibility-dominated chromatin state shows 60-fold 
reduction for samples that lack DNA accessibility, Supplementary 
Fig. 32). Epigenomic mark imputation circumvents these limitations 
and provides a practical alternative to the missing-data strategy of 
ChromHMM, enabling learning of chromatin states jointly on uni-
form signal tracks for large numbers of epigenomic features across large 
numbers of samples.

We first trained a 25-state model jointly3 across all 127 samples 
(Fig. 6b,c) using all tier 1 and 2 marks. This captured multiple types 
of promoter, enhancer, open chromatin, transcribed and repressed 
states and shows specific gene annotation, conservation, DNA meth-
ylation, and RNA-seq enrichments (Fig. 6b,c and Supplementary 
Fig. 33). Compared to the 15-state chromatin state model based on 
observed data in the 127 samples10 (Supplementary Fig. 33), the 
12-mark model better distinguished active versus poised enhancer 
states (using H3K27ac and H3K9ac) and captured novel states (e.g., 
state 19_DNase showing DNA accessibility but lacking enhancer/pro-
moter marks and state 5_Tx5ʹ associated with 5ʹ ends of transcripts and 
based on H3K79me2). Because of the increased stability and robust-
ness of imputed data, imputation-based chromatin states showed more 
consistent genome coverage across samples (Supplementary Fig. 34), 

understanding of the sources of lower-quality datasets is beyond the scope 
of this paper, but the low read depth of several flagged datasets (Fig. 5a and 
Supplementary Fig. 27) suggests that deeper sequencing in some cases 
could improve overall quality.

By contrast, imputation-based QC metrics were consistently able to 
capture worst-ranked datasets, even when traditional QC metrics failed 
(Fig. 5a). We evaluated two imputation-based QC metrics, the first 
based on our Match1 score (overlap of the top 1% of imputed signal with 
observed signal) (Supplementary Fig. 8) and the second based on our 
GWcorr score (genome-wide correlation in signal between imputed and 
observed signal tracks). Both performed well, showing the best agree-
ment with PromRecov and GeneRecov at detecting the worst datasets 
(Fig. 5a). Notably, the E104 Right Atrium H3K36me3 dataset (which both 
the GeneRecov and imputation metrics ranked as the worst H3K36me3 
dataset and had the lowest sequencing coverage depth) was rated as the 
single highest-quality H3K36me3 dataset, based on the NSC metric, and 
was considered among the ten highest-quality H3K36me3 datasets by 
SPOT. The metagene plot of this sample shows inconsistencies with the 
typical pattern for H3K36me3 and is suggestive of possible antibody cross-
reactivity (Fig. 5d), illustrating how QC measures based on agreement 
with imputed data can be used to identify likely problematic datasets that 
are missed by other QC measures, which are ineffective in cases of label 
swaps or antibody cross-reactivity.

Observed datasets varied substantially in their agreement with their 
corresponding imputed datasets (Fig. 5b and Supplementary Table 3 
and Supplementary Fig. 28). Moreover, the observed signal tracks for 
the worst-scoring samples (Match1 metric) showed striking visual differ-
ences from the best samples, whereas the corresponding imputed signal 
tracks had a consistently strong signal (Fig. 5c,d). When correlating QC 
metrics and read depth across all samples (Supplementary Fig. 27), the 
GWcorr and Match1 metrics showed among the highest correlations 
with both PromRecov and GeneRecov and were better correlated with 
sequencing depth for all histone marks, while being distinct from other 
QC metrics for all marks, highlighting that imputation-based QC mea-
sures capture important information, which is complementary, from 
existing QC metrics.

Imputed data identified unexpected signal regions
Although many high-quality experiments will globally agree with the 
imputed data, there could be specific locations for which the imputed 
data do not match the observed data. Because the imputed data consti-
tute a form of prior expectation on the observed data, genomic locations 
where the two disagree can pinpoint biologically interesting locations 
and in some cases tissue-specific regulatory drivers.

To investigate this application of imputed datasets, we analyzed 
genomic locations showing strong DNA accessibility in observed 
data, but weak or no DNA accessibility in imputed data. Sequence 
motif analysis of these locations revealed an enrichment of biologi-
cally relevant regulatory motifs with known cell type–specific roles 
(Supplementary Fig. 29). For example NFKB motifs were found using 
primary monocyte DNA accessibility (E029) consistent with immune 
regulation, and PAX2 motifs in fetal kidney DNA accessibility (E086) 
consistent with roles in kidney development37.

Thus, even for high-quality datasets, building a prior expectation of 
signal across the entire genome can also be informative for identifying 
locally dissimilar locations, which may be associated with cell type–spe-
cific and tissue-specific regulatory processes. However, if a mark that 
is highly correlated with the mark of interest is already present, then 
the imputation may already provide a close enough approximation to 
the true signal so that dissimilar locations may be due to biological or 
experimental noise, rather than cell type–specific regulation.
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of evolutionarily conserved elements (Supplementary Fig. 36)38. 
Additionally, we saw better recovery of a sample that was not included 
in any of our training data (an osteoblast DNA accessibility dataset39, 

better agreement with annotated gene bodies and TSS, both for all 
genes (Supplementary Fig. 35a,b) and for a set of genes expressed in 
a given tissue (Supplementary Fig. 35c,d), and better discrimination 

Figure 6  Imputation using mark subsets and chromatin state learning. (a) Imputation agreement for each mark (columns) using subsets of features (rows) 
in top 1% signal bins or 0.25 concordance measure for DNA methylation, for Chr10 relative to agreement achieved when using all features based on the 
seven samples with deep mark coverage without making distinctions between the tier 1–3 marks. Same-sample features are most important for acetylation 
marks, and same-mark features are most important for H3K27me3, H3K36me3, H3K9me3 and RNA-seq. Profiling of only H3K18ac and H3K79me2 
allows higher relative imputation agreement than all five core marks, assuming a compendium with uniform coverage of marks. Performance for additional 
subsets is shown in supplementary Figure 42. The last two columns show the average performance of the feature subset over all target marks and specifically 
for acetylations. Core=H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3. For the purpose of computing these averages for mark subsets, if the 
target mark was included in the subset then a value of 1 was used for the target mark; the imputation performance restricted to other marks in the subset, 
when available, is provided in the table. The H3K18ac+H3K79me2 and tier 1 and 2 mark evaluations were limited to the five samples that were deeply 
profiled across marks and also had experimentally profiled H3K79me2. (b) Portion of a chromatin state segmentation using imputed data of 12 marks across 
127 samples using the 25-state model and colors shown in c. Segmentation is highly consistent for similar samples but is able to capture highly dynamic 
regulatory elements across different samples. (c) Chromatin state model using 12 marks and 25 states, trained jointly using imputed data across all 127 
samples. For each state (rows) are shown its emission parameters, genome coverage, relative functional enrichments for diverse annotations and conserved 
elements, and median observed and imputed DNA methylation and RNA-seq signal (supplementary Fig. 33), followed by a candidate state annotation. (d) 
Expanded chromatin state model trained using 50 states and 29 marks in seven samples with deep mark coverage. States are grouped and labeled by the 
maximum-enrichment 25-state model match. Additional marks in this model are shown to the left of the vertical line. Emission parameters and functional 
enrichments (similar to c), and percentage of locations recovered for each state using subsets of marks (supplementary Figs. 40, 41 and 43). ‘+H3K18ac’ 
denotes the subset of tier 1 and 2 marks extended by H3K18ac. When the same chromatin state was not maximally recovered with tier 1 and 2 marks, the 
last two columns denote the best other state and its percent assignment.
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other marks. For example, H3K18ac was the single mark giving the 
highest average recovery of all others marks (87%; 88% for acetyla-
tion marks), and greater than 80% recovery for all marks except 
H4K20me1, H3K79me1 and H3K23me2. Profiling of H3K79me2 
was highly complementary, resulting in 98% recovery for H4K20me1 
and H3K79me1; and profiling of H3K79me2 in combination with 
H3K18ac resulted in 90% average recovery of marks in a new cell 
type, when leveraging the entire existing data compendium, but only 
71% average recovery using same-sample features.

We also used chromatin states to evaluate the ‘unrelated’ setting, 
based on the ability of subsets of the 29 marks to recover each of the 50 
chromatin states learned from imputed data in the seven deeply covered 
samples when treating the remaining marks as missing20 (Fig. 6d and 
Supplementary Fig. 43). We found that holding out any of DNA acces-
sibility, H3K9me3, H3K36me3, H3K4me1, H3K27me3 or H3K27ac 
resulted in at least one ‘missing’ state (<20% recovery; Supplementary 
Fig. 43a). Holding out H2A.Z, H3K79me2, H4K20me1, H3K79me1, 
H3K4me3 or H3K4me2 resulted in at least one state with less than 
70% recovery. No single mark in isolation led to substantial state 
recovery beyond the states that were primarily defined by that mark 
(Supplementary Fig. 43d). Using only the five core marks and treating 
all remaining marks as missing data resulted in 31% average recovery 
of assigned locations for each state (Fig 6d and Supplementary Fig. 
43c). Including H3K27ac, H3K9ac or DNA accessibility increased 
average recovery to only 35–37%, and the greatest average state recov-
ery of any mark was 43% with the additional inclusion of H3K18ac. 
Using all tier 1 and 2 marks together increased the average recovery 
to 65%, with only 12 states showing 30% or less recovery (Fig. 6d and 
Supplementary Fig. 43b). Inclusion of H3K18ac with the tier 1 and 
tier 2 marks increased average state recovery to 77%, with all states 
showing greater than 30% recovery. These results suggest substantial 
additional diversity of chromatin states not captured based on the chro-
matin marks that have received extensive mapping by the Roadmap 
Epigenomics and ENCODE projects.

DIsCussIOn
In this paper we introduced a computational approach for prediction 
(imputation) of genome-wide epigenomic signals applied at 25-bp 
resolution. The method imputes both missing and existing datasets 
by leveraging correlations of epigenomic marks within a given sample 
and similarities in the epigenomic landscape of related samples, and it 
is applicable to any type of functional data that can be represented as a 
signal track. We developed and applied an array of quantitative metrics 
and tests to evaluate the accuracy of the imputed data. We showed that 
the imputed data of a mark in a sample is of high resolution and a better 
match to the observed data than using the average of all other observed 
datasets of that mark (an important baseline comparison for any such 
study), and it is also a better match than even the single closest dataset 
(a benchmark that would require knowledge of the target mark and is 
thus not possible in practice).

We showed that imputed data outperformed observed data based 
on a number of analyses: (i) similarity to annotated gene features; 
(ii) consistency across closely related samples; (iii) capture of biological 
relationships between tissue and cell types; (iv) correlation with observed 
gene expression; (v) enrichment of SNPs identified in GWAS; (vi) chro-
matin state capture of TSS, gene bodies, tissue-restricted  activity and 
conserved elements. The observed data only showed a modest advantage 
in identifying genes showing the most tissue-specific expression patterns 
(approximately 3% of genes in each sample). Furthermore, disagreement 
between observed and imputed data were usually due to lower-quality 
experimental datasets, and not low-quality imputation.

Supplementary Fig. 37) including for sample-specific sites; in addi-
tion we captured major sample type differences in chromatin states 
(e.g., ESC/iPSC samples showed consistently more abundant bivalent 
promoter states40, Supplementary Fig. 38), with differences in some 
cases more pronounced than for chromatin states based on observed 
data (Supplementary Fig. 38).

We also trained a 50-state model using imputed data for 29 marks 
across the seven deeply covered samples. The model showed distinct 
state emission parameters, diverse functional enrichments, and rela-
tively consistent correlations in emission parameters and mark fre-
quency across samples for nearly all states (Fig. 6d and Supplementary 
Figs. 39–41).

Accurate imputation using a limited number of marks
To help prioritize marks for experimental profiling in new cell types, we 
studied the subset of marks that provide the highest-accuracy imputa-
tion. We considered two settings, the first (‘unrelated setting’) assuming 
that new samples are largely dissimilar to any existing in the compen-
dium and can rely only on same-sample features, and the second (‘related 
setting’) assuming that new samples are related to an existing compen-
dium of datasets with roughly uniform coverage of each mark that can 
be used to impute in the new sample.

In both settings, we assessed the predictive power of a subset of features 
by comparing the agreement achieved between the observed signal and 
the imputed signal using the subset of features, relative to the agreement 
achieved using all features. We chose this ‘relative agreement’ metric to 
avoid penalizing the prediction of marks that are hard to impute even 
when using all features due to low-quality signal. We evaluated this rela-
tive agreement using the Match1 metric (except for DNA methylation, 
where we used Methyl25 in place), and using the coefficient of determi-
nation (R2). We restricted these evaluations to the seven deep-coverage 
samples on chr10 and did not make distinctions between the tier 1–3 
marks when performing the imputation (Supplementary Fig. 8).

In the ‘unrelated’ setting (same-sample features only), imputa-
tion of H3K36me3, H3K9me3, H3K27me3 and RNA-seq showed the 
lowest relative Match1 scores (20–39%) (Fig. 6a and Supplementary 
Fig. 42a), followed by DNA accessibility (70%), H3K79me2 (82%), and 
H3K4me1/2/3, H2A.Z and H3K79me1 (92–93%), suggesting a prioriti-
zation based on the marks that are hardest to impute using same-sample 
features, even if all other marks are used. All acetylation marks showed 
higher relative Match1 scores (97–100%), but H3K27ac had the lowest 
relative score among them (97%), suggesting it contains the most unique 
information. Relative Match1 score recovery was 87%, on average, across 
all marks when using all same-sample features, 70% when using only 
the five core marks (counting experimentally mapped marks as 100% 
recovered), 73% using the core marks and either DNA accessibility or 
H3K9ac, 78% using the core marks and H3K27ac, and 85% using all 
tier 1 and 2 marks (Fig. 6a and Supplementary Fig. 42a). R2 values 
showed overall similar results and conclusions, but revealed a lower 
relative agreement for DNA methylation (Supplementary Fig. 42b), 
also highlighting its unique information relative to other marks in the 
same sample.

In the ‘related’ setting (both same-sample and same-mark features), 
the five core marks resulted in 80% Match1 relative recovery on aver-
age across all marks, which increased, respectively, to 86%, 82% and 
81% with inclusion of H3K27ac, H3K9ac or DNA accessibility, and 
increased to 89% using all tier 1 and 2 marks (Fig. 6a). Recovery of 
acetylation marks was on average lower (66%) using only the five 
core marks, but increased to 77%, 71% and 68%, respectively, with 
inclusion of H3K27ac, H3K9ac or DNA accessibility. Using one or 
two marks led to sometimes surprisingly high recovery of many 
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mixture as the observed data, though deconvolution of mixed samples 
is a potentially important direction for future work.

Lastly, our paper contributes, to our knowledge, the most comprehen-
sive epigenomic resource to date, including 4,315 imputed datasets across 
127 samples and 34 marks (of which only 26% have been experimentally 
profiled). The remaining 74% (3,193 datasets) exist only as imputed data, 
dramatically expanding the number, diversity and completeness of even 
the most complete existing set of epigenomic maps. We also provide an 
annotation of 25 chromatin states based on 12 imputed marks across 127 
samples, and of 50 chromatin states based on 29 epigenomic marks across 
7 samples, providing the most comprehensive collection of regulatory 
annotations across the human genome to date. As our initial analyses 
demonstrate, the resulting annotation of the noncoding portion of the 
human genome can increase the power of future studies of gene regula-
tion, cellular differentiation, genetic variation and human disease.

MetHODs
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All imputed signal datasets and peak calls and chro-
matin states based on imputed data are available from http://compbio.
mit.edu/roadmap/. The ChromImpute software is available at http://
www.biolchem.ucla.edu/labs/ernst/ChromImpute/ and source code is 
provided as Supplementary File 1 and maintained at https://github.
com/jernst98/ChromImpute. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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value of dm,g(ctʹ, c). If g = global, then dm,g(ctʹ, c) = 1 – r(oc
tʹ

,m,oc,m) where r 
is the Pearson correlation coefficient applied to the genome-wide signal of 
mark m in samples ctʹ and c. If g = local, then at the position p

dm,g(ctʹ,c) = 
20

i =
(oct',m,p+25i – oc,m,p+25i)

2Σ
–20

 

which uses the signal at target position and every 25-bp interval within 500 bp 
to determine the nearest samples. Ties for the nearest sample based on local 
distance were broken arbitrarily.

We construct feature vectors by combining all the sm,n and fm,g,k features 
defined above. Features when applying a predictor in sample ct trained on sample 
ctʹ are defined as above except ctʹ is interchanged with ct.

The specific predictors we used were regression trees27. Formally we define a 
regression tree, T, to have a set of split nodes S and a set of leaf nodes N. A split 
node s∈S can be represented by the 4-tuple (f, v, l, r) where f is a feature used to 
the split the data, v is the value of feature f on which the split is based, and l and 
r are nodes in S∪N. A leaf node n∈N can be represented by a 1-tuple (e) which 
is the prediction value associated with the node. In addition one node w∈S∪N 
is designated as the root of the tree. We let u denote a vector of feature values 
for which an output prediction should be generated. To generate a prediction 
we start by setting a variable z to the root node w, and then while z is not a leaf 
node, if u.(z.f) ≤z.v we let z=z.l and otherwise z=z.r where u.x refers to feature x 
of vector u. Once z is a leaf node the prediction of z.e is made.

We train regression trees for a mark mt based on sample ctʹ for a set of 
sampled positions P recursively. We define a node creation procedure that 
takes as input a set X of positions and identifies a feature, f, and split value, 
v, on which to split the positions. In the procedure we define the sets  
            XX p u f v≤∈ ʹ={ }Lf,v ct .

,m ,pt
 and  XRf,v Xp u f v>∈ ʹ={ }ct  

,m ,pt .

where  uctʹ,mt,p. f  corresponds to the feature value f of the feature vector for posi-
tion p as defined above when considering mt based on sample ctʹ. If the set  
{ (f ,v)| | X ∧|Lf,v  ≥ 20 | ≥ 20 }XRf,v

|  is empty, meaning there is no split that can be 
created with both subsets of the partition containing at least 20 data points, a 
constraint intended to reduce overfitting, then we create a leaf node n where the 
associated output prediction of the node n.e is set to 1

p∈X O|X| Σ ct',mt,p , that is, the 
average value of mark mt in sample ct' at all positions in X; otherwise, we 
create a split node s and set s.f and s.v to f and v, respectively, based on

|X | ≥20 | ≥20} | X 
argmin 

+

1 2 

2 1 

( 

( 

) 

) ) 

( ∑ ∑ 

∑ 
{(f,v )| Lf,v

Lf,v
Rf,v

o ʹct ,m ,pt

o ʹct ,m ,pt

o ʹct ,m ,p’t

o ʹct ,m ,p’t

X Lf,v
X

Rf,v
X

p∈ Lf,v
Xp’∈

∑ 
Rf,v

Xp’∈
Rf,v

Xp∈

This chooses a split that minimizes the squared error of the resulting output 
prediction subject to the constraint that both subsets of the partition have at least 
20 data points. We then set s.l and s.r to the nodes created by applying the node 
creation procedure to the set of positions Xlf,v and Xrf,v, respectively. Ties for 
the best split feature and value were broken randomly. Input data were rounded 
to the nearest tenth, for generating features, training and applying the predic-
tors, and only those values present in the training data were considered as split 
values. DNA methylation values were treated as percentages for the purposes 
of this rounding, but the final output for DNA methylation was reported as a 
fraction. The node creation procedure is initially called with all positions in P, 
which creates the root node.

To make a prediction in sample ct for mark mt at position p we compute 
1 

1 ∑ ∑ b|C |\ \{ct} {ct} ctm t
,m ,Pi tm t

c
b
iC T (u )=ʹ ʹ c ,m ,p ttt ∈

 

where b is number of sets of sampled positions and ,m ,Pi tc t
T (u )ʹ c ,m ,p tt  

denotes the prediction made by the regression tree trained on sample ctʹ to pre-
dict mark mt using the set of sampled positions Pi when applied to the feature 
vector defined as above for predicting mark mt in sample ct at position p.

Each set of positions for training contained 100,000 randomly sampled posi-
tions. We used one set of positions for training, with two exceptions. We trained 
predictors for the tier 3 marks in the primary imputation and for all marks in the 
imputation restricted to the seven samples with deep coverage of many marks 

OnlIne MetHODs
Signal tracks. For the histone mark and DNase signal tracks we used the version 
of the reference epigenomes signal tracks based on the –log10 P value of enrich-
ment relative to input control based on a Poisson distribution from (Roadmap 
Epigenomics Consortium et al., 2015)10, available through http://compbio.mit.
edu/roadmap/. Some of these reference epigenomes are based on multiple bio-
logical samples that were pooled, but we refer to each reference epigenome as 
a ‘sample’ here. We only used the signal for chromosomes 1-22 and X. For the 
RNA-seq data we converted the uniformly processed unstranded signal tracks, 
also available from the same site, to normalized RPKM values, then added one, 
and then took the log base 2 value. The normalized RPKM values were computed 
based on multiplying the unnormalized signal value by 109 then dividing by 
the product of the read length and the number of exonic reads, excluding the 
mitochondria, ribosome and the top 0.5% of signal values10. We converted these 
signal tracks for the histone marks, DNase and RNA-seq data to a 25-bp resolu-
tion by taking the base level average of signal overlapping each 25-bp bin. For 
the DNA methylation we used the uniformly processed whole genome bisulfite 
data10, which provided a fraction methylated value at each base within all CpGs 
that had more than three reads covering it. We filled in missing values for bases 
within CpGs by replacing them with the genome average for DNA methylation 
when training and the chromosome average when applying the predictors as 
this step was done on each chromosome independently.

We selected the –log10 P value signal tracks rather than the fold-change tracks 
for histone marks and DNase as they were designated the primary signal tracks 
for analyses in (Roadmap Epigenomics Consortium et al., 2015)10 on the basis 
of having better signal-to-noise properties. In particular, both sets of tracks 
were generated based on downsampling highly sequenced datasets to the same 
sequencing depth, thus in the –log10 P value track, no dataset had a dispropor-
tionately high signal simply due to being sequenced very deeply, whereas on 
the other hand under-sequenced datasets were included and in some cases had 
locations with high fold-change signals that were the result of noise and did not 
have values as relatively high on the –log10 P-value track. Additionally focus-
ing on the –log10 P-value tracks is more consistent with the basis of the default 
binarization of ChromHMM21 used for the chromatin state learning.

ChromImpute method. The ChromImpute method predicts the signal of a 
target mark in a target sample based on two classes of features: (i) other marks 
mapped in the same sample and (ii) the target mark in other samples. Predictors 
that integrate these features are trained based on each sample for which we 
have the target mark available, excluding the target sample. The ensemble of 
trained predictors are then each applied in the target sample and their predic-
tions are averaged to obtain the final predictions. The ensemble approach would 
be expected to tend to average out biases associated with any one predictor.

Formally, let oc,m,p represent the observed value of mark m in sample c at 
position p. Let Mc,m denote the set of marks in sample c among those eligible 
to be used to predict mark m. Let Cm denote the set of samples in which mark 
m has been mapped. Let mt denote the target mark and ct the target sample. 
To predict mark mt in sample ct for each sample ctʹ ∈ Cmt \{ct}, we separately 
define features. For a sample ctʹ we let MI denote Mct,mt ∩Mct’,mt\{mt}, which is 
the subset of common marks between ct and ctʹ that can be used to predict the 
target mark mt, and then define the two classes of features to predict the signal 
of mark mt in sample ct' at a target genomic position p.

1.  Features based on the set of other marks mapped in the same sample. We define 
features sm,n for each mark m ∈ MI and each value of n such that n = 500i or  
n = 25i for integer values of i = –20,…,20. The feature sm,n is assigned a value 
octʹ,m,p+n. In our notation p+n refers to a position on the same chromosome 
as p, but a base position shifted by n. This corresponds to having features at 
the target position and every 25 bp within 500 bp, and every 500 bp within 
10,000 bp both upstream and downstream of the target position.

2.  Features based on the target mark in other samples. We define features fm,g,k 
for each mark m ∈ MI, g ∈ {local,global}, and k = 1,…,min(10,|CI|) where 
we define CI to be Cmt ∩ Cm\{ctʹ,ct}. CI corresponds to all samples having the 
target mark and the mark that will be used for determining similar samples 
excluding the overall target sample and the sample being used for training 
the predictor. fm,g,k has the value 1–

k
k

j =
ocj,m,pΣ

1
 where cj is the sample of CI that 

is in the ranked position j when each sample c ∈ CI is ordered in increasing 
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data matrix is based on using the same ordering of rows and columns as generated 
based on the observed data.

Chromatin states based on imputed data. Chromatin states were inferred on 
the imputed data using ChromHMM21. The data were binarized at a 200-bp 
resolution by averaging the eight 25-bp intervals overlapping and using an 
average signal threshold of 2. Two types of models were inferred. One model 
used the 12 tier-1 and 2 marks across all 127 samples. The second model was 
based on all tier 1–3 marks imputed in all the seven samples with deep mark 
coverage, where we had a more confident imputation of the tier 3 marks. Both 
posterior probabilities soft-assignments for each state and hard assignments 
based on the maximum posterior were produced, but all the chromatin state 
analyses were based on the hard assignments. Chromatin states based on the 
observed data were obtained from (Roadmap Epigenomics Consortium et 
al., 2015)10.

The chromatin state assignment recovery based on the maps of a subset of 
marks was determined using the EvalSubset command of ChromHMM21. This 
is similar to a procedure previously described20, but based on hard assign-
ments.

Single mark peak calls. Macs2 (version 2.0.10)55 was used to call peaks on the 
imputed signal data. The bdgpeakcall command was used to generate narrow-
Peaks whereas the bdgbroadcall command was used to generate gappedPeaks 
with the ‘-c’ cutoff flag was set to 2. These peak calls were compared to cor-
responding peak calls based on the observed data obtained from (Roadmap 
Epigenomics Consortium et al., 2015)10 that were also generated based on 
Macs2 but based on the callpeak command applied to aligned reads.

Comparison with GWAS analysis. We obtained the contents of the NHGRI 
GWAS Catalog33 on September 12, 2014 through the UCSC Genome 
Browser56. We grouped entries into studies based on a unique combination 
of PubMed ID and trait combination. We filtered the set of SNPs in each study 
such that no two SNPs were within 1 Mb of each other on the same chromo-
some. We did this by ranking the SNPs in a study based on their P value sig-
nificance, and then filtering a SNP if it was within 1 Mb of any higher ranked 
SNP that was not filtered. We tested the significance of the signal level for 
observed and separately imputed data associated with a set of SNPs in a study 
compared to all other GWAS catalog SNPs after the filtering using a Mann-
Whitney U Test as implemented in the Apache Commons Math 3.3 library. 
For each mark and separately for the observed and imputed data, we computed 
estimated false discovery rates (FDRs) at each P value threshold controlling for 
testing multiple study and sample combinations. We did this by generating 100 
random permutations of the study assignments among the set of filtered SNPs 
across all studies, and then recomputed the significance of the signal associa-
tions. The FDRs corresponding to a P value were estimated by computing the 
average number of sample-study combinations that reached that significance 
threshold for a permuted catalog divided by the total number of combinations 
that reached the significance threshold based on the actual catalog. If a less 
significant P value had an initial lower FDR estimate than a more significant P 
value, then the more significant P value also received that lower FDR estimate. 
We displayed the first ten permutations generated in the P value comparison 
plots. For the comparison of the most significant imputed sample with the 
average signal, the FDR for the average signal needed only to control for testing 
multiple studies as there were no sample-specific predictions. In this specific 
comparison the FDR for the imputed data were determined as above, but by 
only considering the most significant P value across all samples for a specific 
study for both the actual and each randomized catalog.

Motif analysis. The motif analysis was conducted for each sample in which 
there were DNase data available. The foreground for the enrichment was those 
locations that had a DNase signal above 5 in the observed data and below 1 
in the imputed data. The background for the enrichment was restricted to 
all locations, which had an observed DNase signal above 5. An additional 
analysis was done where the foreground was all locations that had observed 
a DNase signal above 5, with a genome-wide background. The motif analysis 
was conducted using a previously described software and assembled com-
pendium of motifs57.

(E003, E004, E005, E006, E007, E008, E017)10 on the basis of three independent 
100,000 sampled positions, as we had a limited number of different samples 
on which to train predictors. If the set of features that could be defined for a tar-
get sample in training is empty, which happened during evaluation of predictive 
performance when holding out some features, we excluded that predictor from 
the ensemble.

All predictions except for DNA methylation were at a 25-bp resolution. For 
DNA methylation we made base predictions just at the positions of CpGs, but the 
features based on other marks were still computed at a 25-bp resolution. We did 
not make explicit predictions for positions within the first and last 10 kb of each 
chromosome, and instead 0 was used as the signal value there except for DNA 
methylation where it was 0.5.

For the primary imputation the tier assignments of marks determined which 
marks were eligible to be used to impute other marks (Supplementary Fig. 2), 
and we made predictions across chr1-22 and chrX. For the purpose of evaluating 
imputation performance with subsets of features and marks unbiased by the deep 
sample coverage of certain marks, we did a separate set of imputations using only 
the seven samples with deep mark coverage. For this set of imputations we treated 
the tier 1–3 marks in the same way, and the method could use any of the available 
marks within these tiers to predict any other mark. For these evaluations we made 
predictions only on chr10.

In order to handle the computational demands of training an ensemble of predic-
tors and then applying them to generate genome-wide predictions for more than 
4,000 datasets we first wrote out to disk for the randomly sampled positions feature 
instances for each observed mark and sample. The set of feature instances for a mark 
and sample written out were sufficient to be used to train predictors based on the 
sample for the goal of predicting the mark in any other sample. Depending on the 
overall target sample, different subsets of the features would be used, consistent 
with what is described above, but this step allowed significant reuse of computa-
tion and memory when imputing the same mark across multiple samples. Once 
the training instances were written out, different predictors could be trained in 
parallel. Applying the predictors to impute genome-wide values was parallelized 
over different samples, marks and chromosomes. To more efficiently compute the 
ordering of the locally nearest samples at each position when making genome-wide 
predictions, a computationally demanding step, we leveraged information on the 
ordering of the nearest samples at the previously considered position, which would 
often be highly similar.

Comparison with linear regression, nearest neighbor and single sample train-
ing predictions. For the linear regression and nearest-neighbor comparison, we 
limited the predictions to chr10. The linear regression was the weka (v.3.7.3)51 
implementation with a ridge regularization parameter set to 1. For the compari-
son with nearest-neighbor approaches we used up to the ten nearest neighbors 
defined by H3K4me1 and for both the local and global distance as defined above. 
We selected H3K4me1 as it was defined in all samples and associated with more 
sample-specific patterns3,4. For predicting H3K4me1 we used H3K4me3 instead. 
Similarly for the comparison with training based on a single nearest sample, we 
selected the nearest sample based on global H3K4me1 correlation, except using 
H3K4me3 when predicting H3K4me1.

Gene annotations, expression, conserved elements. For gene annotation enrich-
ments we used a modified version of the GENCODE 10 gene annotations52 that 
only included long transcripts as used in (Roadmap Epigenomics Consortium et al., 
2015)10. For defining a set of expressed genes in each sample we combined the 
protein coding genes and noncoding RNA sets selecting those genes that had an 
RPKM ≥ 0.5 as processed in (Roadmap Epigenomics Consortium et al., 2015)10. 
The evolutionarily conserved elements were the hg19 liftover of the SiPhy-pi con-
served elements previously reported38,53.

Signal heatmap clustering. The signal heatmaps were generated by first randomly 
selecting 2,000 25-bp intervals in the genome, which form one dimension of each 
matrix. The other dimension corresponds to different samples in which the mark 
was observed. The ordering of elements in both dimensions of the matrix were 
determined using the Matlab implementation of hierarchical clustering and opti-
mal leaf ordering54 applied to the observed data. Correlation distance was used 
except to cluster the rows for DNA methylation, H3K23me3, H4K5ac and RNA-seq 
where Euclidean distance was used because of zero variance rows. The imputed 
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