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The development of high-throughput sequencing technologies 
has advanced our understanding of cancer. However, 
characterizing somatic structural variants in tumor genomes 
is still challenging because current strategies depend on the 
initial alignment of reads to a reference genome. Here, we 
describe SMUFIN (somatic mutation finder), a single program 
that directly compares sequence reads from normal and tumor 
genomes to accurately identify and characterize a range of 
somatic sequence variation, from single-nucleotide variants  
(SNV) to large structural variants at base pair resolution. 
Performance tests on modeled tumor genomes showed  
average sensitivity of 92% and 74% for SNVs and structural 
variants, with specificities of 95% and 91%, respectively. 
Analyses of aggressive forms of solid and hematological  
tumors revealed that SMUFIN identifies breakpoints associated 
with chromothripsis and chromoplexy with high specificity.  
SMUFIN provides an integrated solution for the accurate,  
fast and comprehensive characterization of somatic sequence 
variation in cancer.

The recent development of high-throughput sequencing technologies 
has made possible the sequencing of genomes at an unprecedented 
speed, allowing the identification of the genetic basis of numerous dis-
eases. These advances have been particularly important in the study 
of cancer, providing information on thousands of tumor genomes and 
a large catalog of genomic alteration associated with oncogenesis1.  

The characterization of somatic variation in tumor samples is, there-
fore, rapidly becoming a standard practice in biomedicine2. In a 
large fraction of biomedical studies that rely on high-throughput 
sequencing, the production of genome sequence data exceeds avail-
able computer resources and the capabilities of analytic protocols. 
This is particularly pertinent in the field of cancer genomics, where 
the increasing sequencing of tumor genomes calls for faster and more 
accurate analyses.

The identification of somatic variants associated with cancer typi-
cally requires sequencing tumor and normal genome samples from 
the same patient, followed by multiple sequence comparisons. Normal 
and pathological reads are aligned to a reference genome, and the 
alignment is used to identify sequence changes to isolate the somatic 
fraction of variants (i.e., those detected only in the tumor). In prin-
ciple, this simple strategy can be used to detect single-nucleotide 
variants (SNVs) and structural variants. Existing methods for the 
detection of somatic SNVs show high sensitivity and specificity3,4, but 
identifying structural variants is still challenging and remains largely 
unsolved. The need for a reference sequence is particularly limiting. 
Reads carrying variations, such as those covering somatic changes in 
the tumor, are more difficult to align to the reference genome5, and  
corresponding variants might become undetectable. Moreover,  
reference-based methods also must discriminate germline changes 
from somatic variants. In addition to these limitations at detection 
level, this alignment step is also time consuming and requires a  
considerable amount of computing resources.

To define the complete catalog of somatic variation (SNVs and 
structural variants) for a given tumor still requires complex com-
putational pipelines with combinations of different methods, each 
of them restricted to the detection of a particular type of variant 
or structural variants of particular sizes. This restricts the general  
usage of this methodology to centers and groups with considerable 
amounts of computing resources and expertise. For example, widely 
used programs, such as BreakDancer6 or Delly7, can only identify 
structural variants larger than 20 and 150 base pairs, respectively. 
Each of the methods needed for a complete structural characterization 
of somatic variation in tumor genomes further require complex scor-
ing and filtering schemes to achieve acceptable levels of specificity, but 
such procedures drastically lower the sensitivity, leaving a substantial 
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fraction of structural variants undetected. Even experimental proce-
dures, such as those that use single-nucleotide polymorphism (SNP) 
arrays, generate only a partial description of the rearranged tumor, 
as they detect only the fraction of structural variation that generates 
sequence imbalance. The fact that the most recent and complete cata-
log for signatures of somatic mutations in cancer8 does not yet include 
structural variants is a clear consequence of all these limitations.

To fill these gaps, we have developed SMUFIN (for somatic muta-
tion finder), a computational approach for the accurate and complete 
characterization of somatic variation in cancer. SMUFIN searches for 
SNVs and structural variants of all sizes by directly comparing normal 
and tumor sequencing reads without the need of their initial mapping 
onto a reference genome. Here, we evaluated its performance in the 
context of existing strategies and the application to cancer genomics, 
as well as its potential to define complex chromosomal rearrange-
ments in aggressive forms of mantle cell lymphomas and medullob-
lastoma. The implementation of SMUFIN, including latest releases, 
documentation, example data sets and supplementary information is 
freely available at http://cg.bsc.es/smufin/. Source code files are also 
in Supplementary Source Code.

RESULTS
The SMUFIN algorithm
The underlying search algorithm of SMUFIN comprises two major 
steps (Fig. 1). First, under the assumption that any somatic varia-
tion occurring in the tumor genome will generate a unique sequence, 
tumor-specific reads are identified and isolated. This is achieved by 
creating a quaternary sequence tree (implemented as a generalized 
suffix array) using all tumor and normal reads (Fig. 1). In this tree, 
genomic regions of unaltered sequence will generate identical tumor 
and normal reads, and these will cluster together in common branches. 
Reads covering sequence variations in one or both alleles of the tumor 
are expected to form isolated branches without normal reads. These 
unique reads are then grouped into read blocks, each expected to 
cover a single sequence change or break in the tumor. By further 
interrogating the tree for overlapping regions (of at least 30 bp),  
each of these blocks is further expanded by adding and aligning the 
corresponding normal reads.

Next, potential tumor variants are defined and classified on each 
of the breakpoint blocks in two steps (Fig. 1). First, ‘small’ variants 
are identified—that is, SNVs and structural variants that can be com-
pletely defined within the size of a read. Second, ‘large’ structural 
rearrangements, which expand beyond the size of the input read,  
are defined. We expect that each of these blocks will represent one of 

the breaks generated by large insertions, inversions or deletions in the 
tumor genome, or to single translocation points. SMUFIN provides 
to the user these large structural variants as single breakpoints along 
with the corresponding surrounding sequence in the tumor. A simple 
filtering scheme is also used to ensure a minimum of physical cover-
age of all detectable variants and to correct for potential contamina-
tion of tumor cells in normal samples. Although default parameters 
have been adjusted in SMUFIN for common sequencing scenarios 
(i.e., ≥30-fold coverage depth in Illumina sequencing platforms), the 
user can also tune these filters to adapt the method to the particular 
characteristics of the data.

In summary, distinct features of SMUFIN that are not available 
in existing strategies for the detection of somatic variants include  
(i) the direct comparison of normal and tumor reads without the need 
to generate mapped BAM files; (ii) the detection, in a single execu-
tion, of SNVs and structural variants, such as inter- and intrachromo-
somal translocations, inversions, insertions and deletions of any size; 
(iii) the identification of variants at base pair resolution; and (iv) the 
reconstruction of exact changes in the tumor genome, including the 
sequence at both sides of all breakpoints detected.

Furthermore, we have developed a Message Passing Interface (MPI) 
implementation of SMUFIN that yields direct improvements of its 
usability and execution times. Using 16 nodes (2xIntel SandyBridge, 
8-core/2.6 GHz) SMUFIN was able to complete the analysis of a 
tumor-normal, whole-genome pair in 4–8 h for samples with 30× of 
sequencing coverage, and 9–15 h for 60× samples. These executions 
showed discrete peaks of RAM usage of 8–10 Gb and 13–17 Gb per 
node, respectively.

Assessment and comparison of SMUFIN with model genomes
To assess SMUFIN’s performance, we measured both the fraction 
of somatic variants detected (sensitivity) and the precision of this 
detection (specificity) using simulated and real cancer genome data 
together with orthogonal experimental techniques.

We generated normal and tumor test genomes by first applying to 
the human reference genome the sequence variation corresponding to 
a random human haplotype9 and to a predesigned catalog of somatic 
changes, and then simulating whole-genome sequencing at differ-
ent depths of coverage (Online Methods, Supplementary Fig. 1 and  
Supplementary Table 1). To assess the applicability of SMUFIN in 
the current context of cancer genome analysis, we compared its per-
formance with a representative set of somatic variant callers that are 
common parts of current pipelines for the analysis of tumor genomes: 
Mutect for SNVs3, and BreakDancer6, Pindel10, Delly7 and CREST11 

Figure 1  SMUFIN. (a) (Left) As input, SMUFIN takes high-quality read data (FASTQ) of normal and tumor genomes of the same individual. (Middle) Starting  
and ending nucleotide sequences of representative example reads from tumor and normal samples. Reads containing no somatic mutations are  
shown in blue. Somatic mutations and downstream sequences are red. Nucleotide positions are indicated at the bottom, where n corresponds to the 
size of the read (Supplementary Fig. 4). Reads are numbered on the right side of the boxes. Pairs 1 and 1′, 3 and 3′, and 6 and 6′ would cover the same 
region in the nonmutated and mutated allele of the cancer genome, respectively. The other reads represent the two nonmutated alleles. (Right) These 
reads have different properties inside the quaternary tree. Because nonmutated cancer reads are expected to have their counterpart among healthy 
reads, they are also expected to share the same branches. Cancer reads that carry variations are expected to be unique and, therefore, to be located in 
isolated branches. These branches become cancer-specific exactly at the point where they differ, that is, in a breakpoint. SV, structural variation.  
(b) SMUFIN collects all the reads expanding on these cancer-specific branches and takes them as reads containing potential somatic variant 
breakpoints. Because any particular breakpoint is expected to be represented by several reads, we group all detectable reads that are overlapping and 
complementary and construct breakpoint blocks (Supplementary Fig. 5), covered by only one (single orientation) or by two strands (double orientation). 
This step, which includes filters for minimum overlap and coverage, removes a large fraction of false-positive variations, mostly derived from sequencing 
errors. (c) Each of the accepted blocks is then analyzed, as to the type of change detected. First, small variants, which can be defined within a single 
block, are identified. These include SNVs and small insertions, deletions and inversions. The remaining unclassified blocks are then passed into the 
next step where sequence translocations of large structural variants are defined. Here, for each of the breakpoints, we interrogated the tree and retrieved 
up to 100 bp of overlapping normal and tumor reads at each side of the break. (d) Finally, small and large variants are unambiguously positioned onto 
the reference genome by mapping18 the normal consensus region covering and flanking each of the variants. BWA, Burrows-Wheeler Aligner. 
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for structural variants of different sizes (Supplementary Table 2). For 
the present comparison, we ran them as described in their companies’ 
corresponding publication or website.

We first observed that the calling of somatic SNVs was nearly opti-
mal and within the same range in Mutect and SMUFIN, with sensitivi-
ties of 97% and 92%, and specificities of 93% and 99%, respectively 
(Table 1 and Supplementary Table 3). On the other hand, the calling 

efficiency of somatic structural variants varied greatly between differ-
ent methods, revealing clear differences when compared to SMUFIN. 
Some methods reached reasonable levels of sensitivity when the eval-
uation was restricted to the range of structural variants they were 
designed to detect (Pindel and Delly), but these dropped drastically 
when compared against the complete catalog of structural variations 
in the tumor (Supplementary Table 4). By contrast, SMUFIN was 
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able to identify somatic structural variants with a sensitivity of 74% 
independently of the size of the structural variant, reaching >90% 
sensitivity when only structural variants larger than the read size were 
taken into account. SMUFIN’s sensitivity for somatic SNV and struc-
tural variant calling is actually similar to that resulting from the com-
bination of all the methods above: 94% versus 89% for SMUFIN.

The downside of combining these methods as a strategy for vari-
ant calling is the low levels of specificity achieved. In fact, in terms of 
specificity, the values for the external structural variant callers were 
29–77%, whereas SMUFIN reached values of 91% across all structural 
variants. We also tested for consistency at sensitivity level in the iden-
tification of medium structural variants (i.e., variant size of 5–500 bp), 
which constitute a group of variants that have been particularly chal-
lenging for structural variant-calling methods that rely on pre-aligned 
data. This analysis showed that only SMUFIN and Pindel, which has 
been specifically designed also for small structural variants, kept a 

similar sensitivity when compared with the identification of the total 
of structural variants (Supplementary Table 4). When further testing 
SMUFIN, Pindel and CREST using lower levels of in silico sequenc-
ing coverage, we observed an overall decrease in performance, both 
at sensitivity and specificity levels, at physical sequencing coverage 
below 20-fold (Supplementary Fig. 2).

Detection of small somatic variants in human tumors
To further investigate the performance of SMUFIN in real data, we cal-
culated and assessed the positive discovery rate of somatic SNVs and 
structural variants calling using whole-genome sequence (WGS) data 
from primary tumor and matched nontumor samples. We first tested 
the detection of small variants by analyzing a previously described 
sample (M004) of mantle cell lymphoma (MCL)12, an aggressive 
subtype of lymphoid neoplasia. SMUFIN identified 4,409 somatic 
SNVs and 1,094 small structural variants (Supplementary Table 5).  
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Figure 2  Large structural variation in pediatric medulloblastoma tumor MB1. (a) Circos representation of a genome-wide view of all the intra- and 
interchromosomal translocations identified by SMUFIN in this tumor (chromosomes with no breakpoints are excluded). Novel breakpoints are displayed in 
red, whereas those already reported are in gray. Breaks marked with “*” correspond to those that were tested and could be confirmed, resulting in a local 
specificity of 100%. Shadowed area indicates the interconnection between two regions in chromosomes 11 and 17 with high density of DNA breakage 
and rejoining events. (b) Circos map displaying all the breakpoints of chromosome 11 (within the 37–45 Mb region) and the interaction with chromosome 
17 (15–19 Mb) in more detail. Genes affected by, at least one previously undescribed breakpoint are drawn, along with the exact position of the break. 

Table 1  In silico assessment of variant calling

Type of varianta Range of SV detection Number of detectable variantsb
Variant calling  

(sensitivity/specificity)c Deviation from target (nt)d

SMUFIN SNV – 8,240 92/99 0
  SV ≥1 nt 1,798 74/91 1 ± 1

Mutect SNV – 8,240 97/93 0
BreakDancer   SV ≥20 nt 923 63/78 285 ± 145
Pindel   SV ≥1 nt 1,798 74/28 2 ± 26
CREST   SV ≥20 nt 923 42/53 28 ± 111
Delly   SV ≥150 nt 448 89/63 52 ± 77
aVariants are distributed as follows: 8,240 SNVs and 1,798 SVs (738 deletions, 715 insertions and 345 inversions). The table shows the number of breakpoints that define SVs. 
bVariants that fall into the range of detection for each of the methods. cPerformance values obtained counting only variants within the detection range of each of the methods.  
See Supplementary Table 4 for a comparison against the complete SV catalog. dExpressed as average distance ± s.d. from the breakpoint position. eCREST11 has no size limit at 
detection level11. Nevertheless, among all the predictions obtained, none was below 20 nt. 
SV, structural variant; nt, nucleotides.
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To evaluate the specificity of SMUFIN, we verified >94% of SNVs 
(76 of 81) and >80% of structural variants (28 of 35) from a random 
set of 111 of these somatic calls by Sanger sequencing using the same 
DNA used for whole genome sequencing (Supplementary Table 6). 
These specificity rates are in agreement with the corresponding values 
obtained from the in silico analysis.

Complex structural variation in aggressive tumors
We next evaluated SMUFIN’s accuracy in detecting large structural 
variants involving the somatic insertion, deletion, inversion or trans-
location of DNA fragments that are hundreds to millions of base pairs 
in length. For this test, we analyzed whole-genome sequence data 
from another mantle cell lymphoma sample (M003) and a sample 
from a pediatric form of a medulloblastoma (MB1), both known to 
present complex landscapes of chromosomal rearrangements12,13. 
Because these representative examples corresponded to a hemato-
logical and a solid tumor, each sequenced in a different sequencing 
facility, this analysis also measured SMUFIN’s consistency across  
different types of data.

Identification of chromothripsis
MB1 was previously described as presenting chromothripsis, a com-
plex structural alteration of the genome hypothesized to arise from a 
single catastrophic event that generates multiple breakpoints, often 
affecting one single chromosome14. In this tumor sample, SMUFIN 
uncovered a total of 102 breakpoints corresponding to large structural 
variants (i.e., beyond the read size), covering 85 intra- and 17 inter-
chromosomal translocations (Supplementary Table 7). From the 
assessment of a random set of 39 of these breaks through PCR ampli-
fication and Sanger sequencing, we verified 36 (92%). Among all the 
breakpoints detected, 25 agreed with the intervals of chromosomal 
translocations that previously led to the definition of chromoth-
ripsis in this tumor, including three of the four verified at base- 
pair resolution.

In addition, we detected 65 previously unidentified breakpoints in 
the same tumor, covering 53 intra- and 12 interchromosomal trans-
locations (Supplementary Fig. 3). From a random subset of 37 of 
these translocations (16 intra- and 11 interchromosomal), we veri-
fied 25 (92.5%) using Sanger sequencing. Together with the clusters 

Figure 3  Identification and validation of chromoplexy in mantle cell lymphoma tumor M003. (a) Three chimeric chromosomes formed by parts of 
chromosomes 3, 4 and 12 and the primary hallmark MCL translocation t(11;14). These rearrangements were identified by SMUFIN and all were 
experimentally verified by PCR. (b) A representative 24-color multicolor-FISH (mFISH) karyogram (top) that shows an unbalanced karyotype, with 
the t(11;14)(q13;q32) (BKP 10 and 11), a centromeric deletion of 17p, and several rearrangements between chromosomes 3, 4 and 12, all of 
them consistent with the breakpoints identified by SMUFIN. Bottom image shows a metaphase hybridized with whole-chromosome painting (WCP) 
4 (green) and 12 (orange) probes showing four derivative chromosomes with material of these two chromosomes. Combination of mFISH and WCP 
analysis confirmed the presence of two different derivative chromosomes der(3)t(3;4;12), one der(12)t(3;4;12), and identified a fourth, der(4)t(4;12), 
which is not detectable by SMUFIN owing to the centromeric location of the breakpoint in chromosome 4. Scale bar, 10 µm. (c) Genes affected by 
chromoplexy—a reciprocal fusion of two genes (ANK2, in green and SOX5, in red) and a truncated chromatin remodeler (ARID2). Coding and noncoding 
exons are displayed as taller and shorter boxes, respectively.np
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of breakpoints already reported for chromosomes three and four in 
this tumor, new calls uncovered by SMUFIN enabled us to define a 
third damaged region in chromosome 11, with a density of six DNA 
breaks per Mb (between positions 39 and 45 Mb). Notably, many of 
these breakpoints correspond to translocations with chromosome 17 
(Fig. 2). Furthermore, and complementary to the previous functional 
characterization of this tumor, we identified affected genes that were 
not reported in the previous study (Supplementary Table 7), includ-
ing some that have been identified as possible driver genes, such as 
NCOR-1, SIN3P, WDR52 and PALLD, in several types of tumors15.  
Of the 65 breakpoints, 54 were predicted (allowing up to 100-nt devia-
tion in the prediction) by at least one of the methods used above for 
the comparative assessment of SMUFIN, with 44 found only by Delly. 
This is not surprising considering the results of the in silico analysis, 
as sensitivity is not the major limitation of the reference alignment-
dependent approaches.

Identification of chromoplexy
We also analyzed a sample from an aggressive form of mantle cell 
lymphoma (M003), previously described to have undergone com-
plex chromosomal rearrangements12. We used SMUFIN to iden-
tify 30 breakpoints corresponding to large structural variants 
(Supplementary Table 8). Using PCR amplification followed by 
Sanger sequencing, we verified 19 of the 22 breakpoints tested, involv-
ing 7 intra- and 15 interchromosomal translocations (Supplementary 
Table 6). This not only confirms the correct location and the type of 
translocation identified, but it also shows that SMUFIN was able to 
reconstruct the correct sequence around the variants, as five of the 
breakpoints (six inter- and one intrachromosomal; Supplementary 
Table 8) included stretches of a new DNA insertion 5–30 nt long.

We next evaluated whether SMUFIN could be used to define the 
chromosomal arrangement of this tumor. We compared all 30 break-
points identified, with 18 noncentromeric and nontelomeric regions 
of chromosomal imbalances previously detected using Affymetrix 
SNP6.0 array (Affymetrix, Santa Clara, CA)12. SMUFIN could rede-
fine, at base pair resolution, 16 of these 18 regions. By manually 
assembling the fragments between all the translocations detected, 
we could model the landscape of this genome, which included three 
derivative chromosomes formed by combinations of large fragments 
of chromosomes 3 and 12 with smaller parts of chromosome 4. These 
chimeric chromosomes were experimentally confirmed in the man-
tle cell lymphoma cells by a combination of multicolor fluorescence 
in situ hybridization (FISH) and whole-chromosome painting analysis 
(Fig. 3). Furthermore, the resolution provided by SMUFIN allowed 
the identification of the fragmentation and fusion of genes not pre-
viously described in this sample. For example, we found that these 
translocations caused the fusion of ANK2 and SOX5 genes. Notably, 
these two rearrangement events did not appear to be independent as 
the corresponding fragments generated after the double-strand break 
were rejoined again reciprocally—that is, generating both, 12 to 4 and 
4 to 12 translocations and two different forms of ANK2-SOX5 fusions 
(Fig. 3). In fact, 8 out of the 18 breakpoints appeared to be rejoined 
reciprocally, as recently described in prostate tumors16,17, suggesting 
an original organization of the chromatin where these regions were 
physically proximal and somehow interacting. A third transloca-
tion identified in the M003 tumor implies the breakage and putative  
inactivation of ARID2, a gene involved in chromatin remodeling.

By considering the number of rearrangements identified in this 
tumor, their distribution and the number of chromosomes involved, 
we classify this scenario as chromoplexy, a recently described pheno
menon that, in contrast to chromothripsis14, is characterized by the 

presence of tens of unclustered chained rearrangements involving 
two or more chromosomes16,17. The high fraction of reciprocal 
rejoining events found in this tumor, together with the fusion of 
genes and the disruption of a chromatin remodeler gene, is also in 
agreement with the results of the chromoplectic events identified in  
prostate tumors.

Conclusions
We describe SMUFIN, a methodology for the identification of somatic 
variation in tumor genomes from their direct comparison with their 
corresponding normal samples. SMUFIN also provides an integrated 
solution for the identification, in a single run, of somatic SNVs and 
structural variants (insertions, deletions, inversions and translocations 
of any size), which can currently be partially achieved only by com-
bining several independent programs and in-house filtering schemes 
into complex computational pipelines. Our method defines, at base 
pair resolution, complex scenarios of chromosomal rearrangements, 
such as chromoplexy and chromothripsis. SMUFIN was able to iden-
tify the translocations defined before using other computational and 
experimental methods, as well as novel breakpoints that complete the 
corresponding landscapes of chromosomal rearrangements. Owing 
to the underlying mechanism of the algorithm used in SMUFIN,  
our method is not suitable to quantify copy number variations or 
detect complete losses of chromosome arms or inversions flanked by 
palindromic sequences.

Beyond the benefits of the detection capabilities of SMUFIN, 
the current parallel implementation of the program also shows 
substantial improvements at the level of usability and execution 
time compared with available pipelines, as it can currently analyze a 
pair of whole genome sequences with coverage of 30–60× in 4–15 h,  
using 50–80 standard cores and requiring less than 17 Gb of RAM 
memory per computing node. This, together with the scalability of 
the program, will realistically allow a systematic and parallel analysis  
of cancer samples, accessible to nonexpert users with standard  
computing resources.

Taken together, the underlying search mechanism of SMUFIN 
constitutes an alternative way of processing and analyzing genomic 
data, which can inspire the development of new tools for other  
types of genomic analyses. Because SMUFIN actually finds changes 
in one sequence set relative to another, it could potentially be adjusted 
to other types of biomedical and evolutionary studies that rely on  
the comparative analysis of two genomes, even if they are from  
different species.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. For validation sequences produced in this 
study (Supplementary Table 6), European Genome-phenome 
Archive: EGAS00001000510.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
The SMUFIN algorithm. The general structure and the internal mechanism 
of SMUFIN is displayed in Figure 1. The complete variant identification and 
characterization process comprises the following specific steps:

Input data. As input, SMUFIN takes high-quality sequencing data directly 
from FASTQ files of tumor and normal samples of the same individual. 
Alternatively, SMUFIN is also able to accept BAM files, from which it extracts 
all the sequencing reads. Sequences having over 10% of its bases with a phred 
quality score < q20 are discarded.

Construction of the quaternary sequence tree. A ‘quad-tree’-based structure 
is first generated using all high-quality normal and tumor reads. All these 
sequences are sequentially loaded into the tree on the basis of their sequence 
(Fig. 1 and in Supplementary Fig. 4a). Each node of the tree has, at most, four 
branches, each one representing one of the four nucleotides. To avoid sequence 
ambiguity derived from the complexity of the genome, only fragments of at 
least 30 bp are inserted into the tree. In the case of the presence of undefined 
base pairs (“N”), these are removed and the original sequence is split forming 
new shorter reads, which are inserted in the tree only if they are longer than 
30 base pairs. Each of sequences accepted is inserted into the tree, from the 
root, in original form (i.e., starting from nucleotide 1 to the end of the read), 
together with all derived suffixes larger than 30 bp (recursively starting from 
nucleotide 2 to the end, 3 to the end, etc…; Supplementary Fig. 4a). Because 
posterior searches through the tree start from the root, the presence of read 
suffixes allows a rapid identification of particular sequences and reads.

Selecting reads containing candidate variants. Once all the sequences and 
derived suffixes are loaded into the tree, the next step consists in identifying 
all tumor-specific reads. Because we expect that variants generate new and 
distinct sequences in the mutated genome compared with the nonmutated 
sample, SMUFIN first searches and collects sequences (reads) that are only 
present in the tumor sample. These sequences are identified from the tree, as 
nodes and branches with an unbalanced representation of normal (count nor-
mal reads; CNR) and tumor (count tumor reads; CTR) reads (Supplementary 
Fig. 4b). We expect that nodes or branches covering a variation in the tumor 
sequence will theoretically have no representation of normal reads. To favor 
this condition, we start to search the tree from the level 30 toward the leafs. 
We accepted only nodes and branches that have a CTR of at least 4. Internal 
tests suggest that setting CTR ≥ 4 improves specificity in a factor 1.4× with 
a negligible loss of sensitivity (not shown). Additionally, nodes or branches 
with a CNR to CTR ratio below a certain threshold (E_CONT) are selected. 
This threshold can be adjusted by the user to account for expected levels of 
contamination of tumor cells into the normal sample. Please, be aware that 
an E_CONT of 0 implies no expected contamination, that is, no acceptance of 
reads coming from the normal sample (CNR) on that candidate variant node 
or branch, which implies lower final sensitivity but higher specificity. On the 
other hand, an E_CONT larger than 0 always results in a higher sensitivity, but 
at the cost of lower specificity. E_CONT was set to 0 for the in silico analysis 
and to 0.05 for the real tumor samples analyzed here, where we assume a maxi-
mum of 5% contamination of tumor reads into the normal sample.

Grouping candidate reads. After all detectable tumor-specific reads have 
been identified, the next step consists in grouping those that are suspected 
to cover the same variant. For this, candidate sequences are organized by 
identity: two sequences belong to the same group if they overlap by at least  
30 bp. Reverse complementary sequences are also evaluated during this  
grouping in order to be able to cover the variant in both orientations. Sequence 
blocks (groups) with sequences in only one of the orientations or with less 
than four tumor reads are discarded. Once these groups are generated, we 
interrogate the tree, also on the 30-bp overlap basis, to extract the normal 
(nonmutated) reads of the same region and add them to the block. Ideally, 
each block will represent a region in the genome containing the mutated 
and the nonmutated version (see a detailed example of a breakpoint block 
in Supplementary Fig. 5). In order to classify and characterize the type of  
variation identified, we extract the consensus mutated and normal sequences 
from these blocks. Normal consensus sequences will be also used at the 
end of the procedure and mapped onto the reference genome to obtain the  
coordinates of the variant.

Identification and characterization of variants. Once all possible breakpoint 
blocks are defined, the next step consists in identifying and classifying the variation  

included there. Normal and tumor consensus sequences derived from these 
blocks (Supplementary Fig. 5) are recursively compared to identify differ-
ences. A first evaluation will search for small variants, which consist of those 
that are completely included within the consensus sequences (SNV and small 
structural variants: insertions, deletions and inversions). All the blocks that 
do not match this criterion are then considered candidates for large structural  
variants, that is, those likely to cover breakpoints of intra- or interchromo-
somal transitions, part of large deletions, insertions, inversions or transloca-
tions. In this case, each tumor consensus sequence is extended on both ends  
(Fig. 1) by interrogating the tree for unambiguous tumor reads that over-
lap at least 30 bp with the tumor consensus, reconstructing a (maximum)  
200-bp region around the break and allowing the detection of newly generated 
sequence at the point of the break.

After small and large somatic variants are defined, we identify the coor-
dinates of the changes by mapping onto the reference genome the normal 
consensus sequences corresponding to each of the variants, avoiding potential 
mapping conflicts derived from the presence of the variant, as usually happens 
when using reference-based approaches. Sequences mapping (with the same 
score) to several positions in the genome are discarded.

Calibration and default parameters for SMUFIN were adjusted using  
a high-quality set of ~1,000 SNVs identified with the Sidrón software in a 
chronic lymphocytic leukemia sample4.

SMUFIN’s pseudo-code. 
�SeqReader normalReader = openSeqReader(normal_
input_file);
�SeqReader tumorReader = openSeqReader(tumor_
input_file);
Tree qtree = initTree();
Foreach read in normalReader:
If quality_check(read):
insertIntoTree(qtree, read, as_normal); 
Foreach read in tumorReader:
If quality_check(read):
insertIntoTree(qtree, read, as_tumor);
List candidate_reads = GenerateEmptyList();
Foreach node in qtree:
�If depth(node) >= 30 and CTR(node) >= 4 and 
CNR(node)/CTR(node) < E_CONT):
reads = GetTumorReadsFromNode(node);
InsertReadsIntoList(candidate_reads, reads);
List breakpoint_blocks = GenerateEmptyList();
Foreach read in candidate_reads:
�tumor_reads = GetOverlappingReadsFromCandidateRea
ds(read, candidate_reads);
�normal_reads = GetOverlappingReadsFromTree(tumor_
reads, qtree, as_normal);
�bp_block = GenerateBPBlock(normal_reads, tumor_
reads);
If Coverage(bp_block) >= 4:
InsertIntoList(breakpoint_blocks, bp_block);
�List large_variant_candidates = GenerateEmpty 
List();
Foreach bp_block in breakpoint_blocks
�normal_consensus_sequence = GetNormalConsensus 
SequenceFromBPBlock(bp_block);
�tumor_consensus_sequence = GetTumorConsensusSequence 
FromBPBlock(bp_block);
�If HasSmallVariant(normal_consensus_sequence, 
tumor_consensus_sequence)
�align_info = MapSequenceToReference(normal_consensus_ 
sequence)
If (UnambiguousMapping(align_info)
outputSmallSV(align_info, bp_block);
Else
InsertIntoList(large_variant_candidates, bp_block);
Foreach bp_block in large_variant_candidates
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�extended_sequence = ExtendTumorSequenceFromBPBlock 
(bp_block, qtree);
�align_info = MapExtendedToReference(extended_
sequence);
If UnambiguousMapping(align_info)
OutputLargeSV(align_info, extended_sequence);

Construction of the in silico genome. A personalized genome was simulated 
using the hg19 reference genome downloaded from UCSC (with no repeat-
masking), and modifying it to match a randomly chosen human haplotype 
from the 1000 Genome database. These 7,194,026 variants consist of 4,745,917 
SNPs and 2,447,367 deletions. The complete list of these germline events can 
be found at http://cg.bsc.es/smufin/download. The catalog of somatic variants 
further added to this personalized genome includes 8,240 SNVs (more than 
100 bp apart), 20 known tumor translocations19,20, 715 random insertions, 738 
random deletions and 345 random inversions, all ranging from 1 bp to 100 Mbp  
(Supplementary Fig. 4 and Supplementary Table 1). In silico sequencing was 
simulated using ART Illumina21. For this, we first generated a profile using 
the M004 sample to extract parameters, like sequence variation or read length. 
We then run the program at different depths of coverage, using the resulting 
parameters and a default error rate (0.00009).

Analysis of the in silico genome with external methods. Each of the external 
methods for the comparison with SMUFIN was run on pooled libraries (normal  
and tumoral) using default settings except for the following parameters: 
BreakDancer was run with -q 10 (mapping quality) and score cutoff of >80, 
as described before6,22; Pindel’s results with less than five supporting reads 
were not considered as recommended elsewhere to increase specificity23;  
predictions obtained with Delly were rejected if the number of supporting 
reads were less than three and the mapping quality 20. For BreakDancer, Pindel 
and Delly, somatic variants were obtained by filtering out all the structural var-
iants found in both normal and tumor libraries: we only kept those structural 
variants with no unique supporting reads from the normal library. CREST 
and Mutect already provided somatic variants as direct results. BreakDancer 
and Pindel were used as complementary methods covering large and small 
structural variants, respectively, as advised by the developers.

Data sets. M003, M004 and MB1 were obtained with informed consent 
and an ethical vote (Institutional Review Board) following ICGC guidelines 
(https://icgc.org). M003, M004 and MB1 were accessed through the European 
Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/) under access 
numbers EGAS00001000510 and EGAS00001000085.

Identification and analysis of variant genes. Variants genes in tumor samples 
were identified by analyzing all the changes identified with ANNOVAR24.  
The analysis of the resulting genes potentially modified at coding or splicing 
level were further analyzed with Intogen15 in order to infer their potential 
role in oncogenesis.

Experimental verification of variants. PCR primers were designed on 
sequence blocks of 2,000 bp around the target variant using Primer 3 (http://
bioinfo.ut.ee/primer3-0.4.0/primer3/)25. PCR reactions were performed for 
tumor and control samples. Each target locus was amplified using 50 ng of 
DNA. The amplification was performed using Qiagen Multiplex PCR Kit 
(Qiagen), and the reaction mix contained 2× QIAGEN Multiplex PCR Master 

Mix, 10× primer mix (2 µM of each primer) and RNase-free water until a total 
reaction volume of 25 µl. PCR conditions were as follows: 96 °C, 10 min; 2 
cycles of 96 °C, 30 s/60 °C, 30 s/72 °C, 1 min 30 s; 2 cycles of 96 °C, 30 s/58 °C,  
30 s/72 °C, 1 min 30 s; 2 cycles of 96 °C, 30 s/56 °C, 30 s/72 °C, 1 min 30 s;  
35 cycles of 96 °C, 30 s/54 °C, 30 s/72 °C, 1 min 30 s/70 °C, 10 min.  
All the PCR products were run in a capillary electrophoresis gel (QIAxcel 
Advanced System, Qiagen) with the QIAxcel DNA screening kit (Qiagen), and 
the multiband PCR products were purified using NucleoSpin Gel and PCR 
Clean-up (Mercherey-Nagel). Regarding the Sanger sequencing, PCR prod-
ucts were cleaned using ExoSAP-IT (USB) and sequenced using ABI Prism 
BigDye terminator v3.1 (Applied Biosystems) with 5 pmol of each primer. 
Sequencing reactions were run on an ABI-3730 Sanger sequencing platform 
(Applied Biosystems). Sequences were examined with the Mutation Surveyor 
DNA Variant Analysis Software (Softgenetics).

G-banding, FISH and M-FISH analysis. Conventional cytogenetics was per-
formed on Giemsa-banded chromosomes (G-banding) obtained after a 72-h 
culture and stimulation with tetradecanoyl-phorbol-acetate. Results of the ten 
metaphases analyzed were described according to the International System 
for Human Cytogenetic Nomenclature26. FISH studies for the presence of 
the t(11;14) translocation and 17p deletions were performed using Vysis LSI 
IGH/CCND1 Dual Color Dual Fusion and Vysis LSI TP53 (17p13.1) (Abbott 
Molecular, Des Plaines, IL) on fixed cells according to the manufacturer’s 
specifications. Two hundred nuclei were examined for each probe. To identify 
the chromosomes involved in marker chromosomes and to disclose other pos-
sible structural balanced abnormalities, we performed 24-color karyotyping 
using 24XCyte human multicolor FISH (mFISH) probe kit according to manu-
facturer’s instructions (MetaSystems, Altlussheim, Germany) consisting of 24 
different chromosome painting probes (combinatorial labeling). Image capture 
was done with Nikon Eclipse 50i equipped with a CCD-camera (CoolCube1, 
MetaSystems) and appropriate filters using Isis software. Karyotyping was 
done using the 24-color mFISH upgrade package. Additionally, whole chromo-
somal paintings (WCP) of chromosome 4 (spectrum green) and 12 (spectrum 
orange) were performed simultaneously.

Figure 3 was done using CIRCOS software27.
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