Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming immunological barriers in regenerative medicine

Abstract

Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The likelihood of encountering immunological barriers depends on the type of cells and tissues used in regenerative therapies.
Figure 2: Molecular basis of T cell allorecognition and activation.

Kim Caesar/Nature Publishing Group

Figure 3: Antigen-specific tolerance induction by apoptotic, polymeric or protein carriers.

Kim Caesar/Nature Publishing Group

Similar content being viewed by others

References

  1. Blazar, B.R., Murphy, W.J. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 443–458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petersdorf, E.W. The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood 122, 1863–1872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lakkis, F.G. & Lechler, R.I. Origin and biology of the allogeneic response. Cold Spring Harb. Perspect. Med. 3, a014993 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bour-Jordan, H. et al. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol. Rev. 241, 180–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gill, R.G. NK cells: elusive participants in transplantation immunity and tolerance. Curr. Opin. Immunol. 22, 649–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Josefowicz, S.Z., Lu, L.F. & Rudensky, A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood, K.J., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Calne, R.Y. et al. Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 2, 1323–1327 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. The U.S. Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N. Engl. J. Med. 331, 1110–1115 (1994).

  10. Jacobson, P., Uberti, J., Davis, W. & Ratanatharathorn, V. Tacrolimus: a new agent for the prevention of graft-versus-host disease in hematopoietic stem cell transplantation. Bone Marrow Transplant. 22, 217–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Allison, A.C. & Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47, 85–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Schlitt, H.J. et al. Replacement of calcineurin inhibitors with mycophenolate mofetil in liver-transplant patients with renal dysfunction: a randomised controlled study. Lancet 357, 587–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hoda, D. et al. Sirolimus for treatment of steroid-refractory acute graft-versus-host disease. Bone Marrow Transplant. 45, 1347–1351 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Shin, H.J. et al. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 118, 2342–2350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vodanovic-Jankovic, S., Hari, P., Jacobs, P., Komorowski, R. & Drobyski, W.R. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 107, 827–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koreth, J. et al. Bortezomib, tacrolimus, and methotrexate for prophylaxis of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation from HLA-mismatched unrelated donors. Blood 114, 3956–3959 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shono, Y. et al. A small molecule c-Rel inhibitor reduces alloactivation of T-cells without compromising anti-tumor activity. Cancer Discov. 4, 578–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reddy, P. et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118, 2562–2573 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strioga, M.M. et al. Therapeutic dendritic cell-based cancer vaccines: the state of the art. Crit. Rev. Immunol. 33, 489–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Lutz, M.B. Therapeutic potential of semi-mature dendritic cells for tolerance induction. Front. Immunol. 3, 123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ezzelarab, M.B. et al. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am. J. Transplant. 13, 1989–2005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stenger, E.O., Turnquist, H.R., Mapara, M.Y. & Thomson, A.W. Dendritic cells and regulation of graft-versus-host disease and graft-versus-leukemia activity. Blood 119, 5088–5103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon, J.R., Ma, Y., Churchman, L., Gordon, S.A. & Dawicki, W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Front. Immunol. 5, 7 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rossi, R.J., Jackson, B.M., Zhang, A.H. & Scott, D.W. Tolerance induction via B-cell delivered gene therapy. Methods Mol. Biol. 900, 471–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Leveson-Gower, D.B. et al. Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 117, 3220–3229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pillai, A.B., George, T.I., Dutt, S., Teo, P. & Strober, S. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J. Immunol. 178, 6242–6251 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Fan, H. et al. Regulatory T cell therapy for the induction of clinical organ transplantation tolerance. Semin. Immunol. 23, 453–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Joffre, O., Gorsse, N., Romagnoli, P., Hudrisier, D. & van Meerwijk, J.P. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 103, 4216–4221 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sagoo, P., Lombardi, G. & Lechler, R.I. Relevance of regulatory T cell promotion of donor-specific tolerance in solid organ transplantation. Front. Immunol. 3, 184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hippen, K.L. et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci. Transl. Med. 3, 83ra41 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tang, Q. & Bluestone, J.A. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb. Perspect. Med. 3, a015552 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schneidawind, D., Pierini, A. & Negrin, R.S. Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood 122, 3116–3121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, J. et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 116, 129–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghobadi, A. et al. A phase I study of azacitdine after donor lymphocyte infusion for relapsed acute myeloid leukemia post allogeneic stem cell transplantation. Conference abstract of the 55th American Society of Hematology Annual Meeting (New Orleans, 2013).

    Google Scholar 

  37. Glowacki, A.J. et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc. Natl. Acad. Sci. USA 110, 18525–18530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tolar, J., Le Blanc, K., Keating, A. & Blazar, B.R. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28, 1446–1455 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    Article  PubMed  Google Scholar 

  40. Crop, M.J. et al. Donor-derived mesenchymal stem cells suppress alloreactivity of kidney transplant patients. Transplantation 87, 896–906 (2009).

    Article  PubMed  Google Scholar 

  41. Eggenhofer, E. et al. Mesenchymal stem cells together with mycophenolate mofetil inhibit antigen presenting cell and T cell infiltration into allogeneic heart grafts. Transpl. Immunol. 24, 157–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Perico, N. et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin. J. Am. Soc. Nephrol. 6, 412–422 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, N. et al. Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: experiments and practice. Ann. Hematol. 92, 1295–1308 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fuchimoto, Y. et al. Mixed chimerism and tolerance without whole body irradiation in a large animal model. J. Clin. Invest. 105, 1779–1789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mapara, M.Y. et al. Induction of stable long-term mixed hematopoietic chimerism following nonmyeloablative conditioning with T cell-depleting antibodies, cyclophosphamide, and thymic irradiation leads to donor-specific in vitro and in vivo tolerance. Biol. Blood Marrow Transplant. 7, 646–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sachs, D.H., Kawai, T. & Sykes, M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med. 4, a015529 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Czechowicz, A., Kraft, D., Weissman, I.L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Logan, A.C., Weissman, I.L. & Shizuru, J.A. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr. Opin. Immunol. 24, 640–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levine, J.E. et al. Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood 111, 2470–2475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wabbijn, M. et al. Ten-year follow-up of recipients of a kidney or heart transplant who received induction therapy with a monoclonal antibody against the interleukin-2 receptor. Exp. Clin. Transplant. 2, 201–207 (2004).

    PubMed  Google Scholar 

  53. Xhaard, A. et al. Steroid-refractory acute GVHD: lack of long-term improved survival using new generation anticytokine treatment. Biol. Blood Marrow Transplant. 18, 406–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Beyersdorf, N. et al. Protection from graft-versus-host disease with a novel B7 binding site-specific mouse anti-mouse CD28 monoclonal antibody. Blood 112, 4328–4336 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Li, J. et al. Roles of CD28, CTLA4, and inducible costimulator in acute graft-versus-host disease in mice. Biol. Blood Marrow Transplant. 17, 962–969 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, S. et al. CTLA4-Ig-based conditioning regimen to induce tolerance to cardiac allografts. J. Surg. Res. 136, 238–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Wallace, P.M. et al. CTLA4Ig treatment ameliorates the lethality of murine graft-versus-host disease across major histocompatibility complex barriers. Transplantation 58, 602–610 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Asberg, A. et al. Calcineurin inhibitor avoidance with daclizumab, mycophenolate mofetil, and prednisolone in DR-matched de novo kidney transplant recipients. Transplantation 82, 62–68 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Maltzman, J.S. Costimulation blockade-a double-edged sword? Am. J. Transplant. 12, 2269–2270 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Shapiro, A.M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).

    Article  CAS  PubMed  Google Scholar 

  63. Cui, H. et al. Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 88, 160–169 (2009).

    Article  PubMed  Google Scholar 

  64. Neufeld, T. et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 8, e70150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yap, W.T. et al. Collagen IV-modified scaffolds improve islet survival and function and reduce time to euglycemia. Tissue Eng. Part A 19, 2361–2372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brady, A.-C. et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng. Part A 19, 2544–2552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perez, V.L. et al. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia 54, 1121–1126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Komori, J., Boone, L., DeWard, A., Hoppo, T. & Lagasse, E. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat. Biotechnol. 30, 976–983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dane, K.Y. et al. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J. Control. Release 156, 154–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Berman, D.M. et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59, 2558–2568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Lund, A.W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Reports 1, 191–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Hirosue, S. et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192, 5002–5011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo, X. et al. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc. Natl. Acad. Sci. USA 105, 14527–14532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martin, A.J. et al. Ethylenecarbodiimide-treated splenocytes carrying male CD4 epitopes confer histocompatibility Y chromosome antigen transplant protection by inhibiting CD154 upregulation. J. Immunol. 185, 3326–3336 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Fife, B.T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kheradmand, T. et al. Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials 32, 4517–4524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Translational Med. 5, 188ra175–188ra175 (2013).

    Article  CAS  Google Scholar 

  80. Getts, D.R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stern, J.N.H. et al. Promoting tolerance to proteolipid protein-induced experimental autoimmune encephalomyelitis through targeting dendritic cells. Proc. Natl. Acad. Sci. USA 107, 17280–17285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mukherjee, G. et al. DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8+ T cells independently of PD-1 and PD-L1. Int. Immunol. 25, 651–660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, D. et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med. 209, 109–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Kontos, S., Kourtis, I.C., Dane, K.Y. & Hubbell, J.A. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl. Acad. Sci. USA 110, E60–E68 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Shapiro, A.M. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, W., Sayegh, M.H. & Khoury, S.J. Mechanisms of acquired thymic tolerance in vivo: intrathymic injection of antigen induces apoptosis of thymocytes and peripheral T cell anergy. J. Immunol. 160, 1504–1508 (1998).

    CAS  PubMed  Google Scholar 

  88. Cober, S.R., Randolph, M.A. & Lee, W.P. Skin allograft survival following intrathymic injection of donor bone marrow. J. Surg. Res. 85, 204–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Djamali, A. et al. Intrathymic injection of anti-Fas monoclonal antibody prolongs murine non-vascularized cardiac allograft survival. Transpl. Int. 17, 301–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Marodon, G. et al. Induction of antigen-specific tolerance by intrathymic injection of lentiviral vectors. Blood 108, 2972–2978 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Tuckett, A.Z. et al. Image-guided intrathymic injection of multipotent stem cells supports lifelong T-cell immuity and facilitates targeted immunotherapy. Blood 123, 2797–2805 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poznansky, M.C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18, 729–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Seach, N. et al. Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng. Part C Methods 16, 543–551 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Clark, R.A., Yamanaka, K., Bai, M., Dowgiert, R. & Kupper, T.S. Human skin cells support thymus-independent T cell development. J. Clin. Invest. 115, 3239–3249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Shtrichman, R., Germanguz, I. & Itskovitz-Eldor, J. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr. Mol. Med. 13, 792–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, S.M. & Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol. 13, 497–505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Araki, R. et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494, 100–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, T., Zhang, Z.N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Tang, C., Weissman, I.L. & Drukker, M. Immunogenicity of in vitro maintained and matured populations: potential barriers to engraftment of human pluripotent stem cell derivatives. Methods Mol. Biol. 1029, 17–31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cicciarelli, J.C., Lemp, N.A. & Kasahara, N. Prospects for designing universal stem cell lines. in The Immunological Barriers to Regenerative Medicine (ed., Fairchild, P.J.) 147–174 (Humana Press, New York, 2012).

    Google Scholar 

  103. Muraoka, N. & Ieda, M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis. Annu. Rev. Physiol. 76, 21–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Magro, L. et al. Imatinib mesylate as salvage therapy for refractory sclerotic chronic graft-versus-host disease. Blood 114, 719–722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Vijayakrishnan, L., Venkataramanan, R. & Gulati, P. Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol. Sci. 32, 25–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Evenou, J.P. et al. The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J. Pharmacol. Exp. Ther. 330, 792–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Penack, O. et al. Inhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth. J. Natl. Cancer Inst. 102, 894–908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shimabukuro-Vornhagen, A., Liebig, T. & von Bergwelt-Baildon, M. Statins inhibit human APC function: implications for the treatment of GVHD. Blood 112, 1544–1545 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Pruett, T.L. et al. Safety profile, pharmacokinetics, and pharmacodynamics of siplizumab, a humanized anti-CD2 monoclonal antibody, in renal allograft recipients. Transplant. Proc. 41, 3655–3661 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Adkins, D., Ratanatharathorn, V., Yang, H. & White, B. Safety profile and clinical outcomes in a phase I, placebo-controlled study of siplizumab in acute graft-versus-host disease. Transplantation 88, 198–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Christopeit, M. et al. Rituximab reduces the incidence of acute graft-versus-host disease. Blood 113, 3130–3131 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Schub, N. et al. Therapy of steroid-refractory acute GVHD with CD52 antibody alemtuzumab is effective. Bone Marrow Transplant. 46, 143–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Garcia-Cadenas, I. et al. Updated experience with inolimomab as treatment for corticosteroid-refractory acute graft-versus-host disease. Biol. Blood Marrow Transplant. 19, 435–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Drobyski, W.R. et al. Tocilizumab for the treatment of steroid refractory graft-versus-host disease. Biol. Blood Marrow Transplant. 17, 1862–1868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chung, B. et al. Prevention of graft-versus-host disease by anti IL-7Ralpha antibody. Blood 110, 2803–2810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mai, H.L. et al. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival. J. Clin. Invest. 124, 1723–1733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jang, M.S. et al. A blocking anti-CD28-specific antibody induces long-term heart allograft survival by suppression of the PKC theta-JNK signal pathway. Transplantation 85, 1051–1055 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Li, N. et al. Blockade of CD28 by a synthetical peptoid inhibits T-cell proliferation and attenuates graft-versus-host disease. Cell. Mol. Immunol. 7, 133–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Page, A. et al. CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am. J. Transplant. 12, 115–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Taylor, P.A. et al. Targeting of inducible costimulator (ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease (GVHD) and facilitates engraftment of allogeneic bone marrow (BM). Blood 105, 3372–3380 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Trzonkowski, P. et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin. Immunol. 133, 22–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Highfill, S.L. et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116, 5738–5747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.Z. Tuckett for valuable feedback and her input in the design of Figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes L Zakrzewski.

Ethics declarations

Competing interests

Jeffrey Hubbell wishes to declare that he is founder and shareholder of Anokion SA, which is commercializing the technology described in the manuscript regarding binding antigens to erythrocytes for tolerization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakrzewski, J., van den Brink, M. & Hubbell, J. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol 32, 786–794 (2014). https://doi.org/10.1038/nbt.2960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing