Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells

Abstract

Efforts to derive hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) are complicated by the fact that embryonic hematopoiesis consists of two programs, primitive and definitive, that differ in developmental potential. As only definitive hematopoiesis generates HSCs, understanding how this program develops is essential for being able to produce this cell population in vitro. Here we show that both hematopoietic programs transition through hemogenic endothelial intermediates and develop from KDR+CD34CD144 progenitors that are distinguished by CD235a expression. Generation of primitive progenitors (KDR+CD235a+) depends on stage-specific activin-nodal signaling and inhibition of the Wnt–β-catenin pathway, whereas specification of definitive progenitors (KDR+CD235a) requires Wnt–β-catenin signaling during this same time frame. Together, these findings establish simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt–β-catenin manipulation, and in doing so provide access to enriched populations for future studies on hPSC-derived hematopoietic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primitive hematopoiesis originates from a KDR+CD235a+ progenitor.
Figure 2: KDR+CD235a mesoderm–derived CD34+CD43 cells possess definitive hematopoietic potential, but both CD34+ populations possess hemogenic endothelium-like potential.
Figure 3: Canonical Wnt signaling specifies definitive hematopoiesis.
Figure 4: Wnt manipulation allows for selective differentiation of primitive or definitive hematopoietic progenitors.
Figure 5: Model of primitive and definitive hematopoietic specification from hPSCs.

Similar content being viewed by others

References

  1. Medvinsky, A., Rybtsov, S. & Taoudi, S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 138, 1017–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J. & Keller, G. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432, 625–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Lancrin, C. et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457, 892–895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antas, V.I., Al-Drees, M.A., Prudence, A.J., Sugiyama, D. & Fraser, S.T. Hemogenic endothelium: a vessel for blood production. Int. J. Biochem. Cell Biol. 45, 692–695 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    CAS  PubMed  Google Scholar 

  8. Kennedy, M., D'Souza, S.L., Lynch-Kattman, M., Schwantz, S. & Keller, G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109, 2679–2687 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fraser, S.T. The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells. ISRN Hematol. 2013, 568928 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clarke, R.L. et al. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat. Cell Biol. 15, 502–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Irion, S. et al. Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137, 2829–2839 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kennedy, M. et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Reports 2, 1722–1735 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Dubois, N.C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi, K.D. et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Reports 2, 553–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Slukvin, I.I. Deciphering the hierarchy of angiohematopoietic progenitors from human pluripotent stem cells. Cell Cycle 12, 720–727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pearson, S., Sroczynska, P., Lacaud, G. & Kouskoff, V. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 135, 1525–1535 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Vodyanik, M.A., Thomson, J.A. & Slukvin, I.I. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108, 2095–2105 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sankaran, V.G., Xu, J. & Orkin, S.H. Advances in the understanding of haemoglobin switching. Br. J. Haematol. 149, 181–194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. La Motte-Mohs, R.N., Herer, E. & Zuniga-Pflucker, J.C. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro . Blood 105, 1431–1439 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Davis, R.P. et al. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111, 1876–1884 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Jackson, S.A., Schiesser, J., Stanley, E.G. & Elefanty, A.G. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS ONE 5, e10706 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nostro, M.C., Cheng, X., Keller, G.M. & Gadue, P. Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2, 60–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135, 2969–2979 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polychronopoulos, P. et al. Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J. Med. Chem. 47, 935–946 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jho, E.H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bigas, A., Robert-Moreno, A. & Espinosa, L. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol. 54, 1175–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Samokhvalov, I.M., Samokhvalova, N.I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, Y. et al. Early ontogenic origin of the hematopoietic stem cell lineage. Proc. Natl. Acad. Sci. USA 109, 4515–4520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phillips, J.H. et al. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins. J. Exp. Med. 175, 1055–1066 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Tavian, M., Robin, C., Coulombel, L. & Peault, B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15, 487–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Peschle, C. et al. Embryonic–Fetal Hb switch in humans: studies on erythroid bursts generated by embryonic progenitors from yolk sac and liver. Proc. Natl. Acad. Sci. USA 81, 2416–2420 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gertow, K. et al. WNT3A promotes hematopoietic or mesenchymal differentiation from hESCs depending on the time of exposure. Stem Cell Reports 1, 53–65 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paluru, P. et al. The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res. (Amst.) 12, 441–451 (2014).

    Article  CAS  Google Scholar 

  36. Liu, F. et al. ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 119, 3295–3305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chanda, B., Ditadi, A., Iscove, N.N. & Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ruiz-Herguido, C. et al. Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. J. Exp. Med. 209, 1457–1468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, W., Zhang, D., Bursac, N. & Zhang, Y. WNT3 Is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Reports 1, 46–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshimoto, M. et al. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119, 5706–5714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Böiers, C. et al. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535–548 (2013).

    Article  PubMed  Google Scholar 

  42. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sturgeon, C.M. et al. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev. Cell 23, 45–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Schmitt, T.M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro . Nat. Immunol. 5, 410–417 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the SickKids–UHN Flow Cytometry Facility for their expert assistance with cell sorting, in particular A. Khandani. This work was supported by National Institutes of Health grants U01 HL100395 and CIHR MOP93569, HOP83070 and MOP12927. C.M.S. and A.D. were supported by the McMurrich Post-Doctoral Fellowship and the Magna-Golftown Post-Doctoral Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Contributions

C.M.S., A.D., G.A., M.K. and G.K. all participated in the design of the experiments. C.M.S., A.D., G.A. and M.K. performed the experiments. C.M.S. and G.K. wrote the manuscript.

Corresponding author

Correspondence to Gordon Keller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturgeon, C., Ditadi, A., Awong, G. et al. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol 32, 554–561 (2014). https://doi.org/10.1038/nbt.2915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing