Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient and specific gene knockdown by small interfering RNAs produced in bacteria

This article has been updated

Abstract

Synthetic small interfering RNAs (siRNAs) are an indispensable tool to investigate gene function in eukaryotic cells1,2 and may be used for therapeutic purposes to knock down genes implicated in disease3. Thus far, most synthetic siRNAs have been produced by chemical synthesis. Here we present a method to produce highly potent siRNAs in Escherichia coli. This method relies on ectopic expression of p19, an siRNA-binding protein found in a plant RNA virus4,5. When expressed in E. coli, p19 stabilizes an 21-nt siRNA-like species produced by bacterial RNase III. When mammalian cells are transfected by them, siRNAs that were generated in bacteria expressing p19 and a hairpin RNA encoding 200 or more nucleotides of a target gene reproducibly knock down target gene expression by 90% without immunogenicity or off-target effects. Because bacterially produced siRNAs contain multiple sequences against a target gene, they may be especially useful for suppressing polymorphic cellular or viral genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic p19 expression captures small RNAs in E. coli.
Figure 2: pro-siRNAs knock down target gene expression.
Figure 3: pro-siRNA–mediated knockdown of endogenous and viral gene expression in human cells.
Figure 4: pro-siRNA sequences and assessment of off-target effects.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

Referenced accessions

NCBI Reference Sequence

Change history

  • 22 March 2013

    In the version of this article initially published online, in Figure 4d, the label EGFPPFL vs NC siRNA has been corrected to read EGFPFL vs NC siRNA. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  Google Scholar 

  3. Rettig, G.R. & Behlke, M.A. Progress toward in vivo use of siRNAs-II. Mol. Ther. 20, 483–512 (2012).

    Article  CAS  Google Scholar 

  4. Voinnet, O., Pinto, Y.M. & Baulcombe, D.C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96, 14147–14152 (1999).

    Article  CAS  Google Scholar 

  5. Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002).

    Article  CAS  Google Scholar 

  6. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  7. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  Google Scholar 

  8. Myers, J.W., Jones, J.T., Meyer, T. & Ferrell, J.E. Jr. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol. 21, 324–328 (2003).

    Article  CAS  Google Scholar 

  9. Yang, D. et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 9942–9947 (2002).

    Article  CAS  Google Scholar 

  10. Morlighem, J.E., Petit, C. & Tzertzinis, G. Determination of silencing potency of synthetic and RNase III-generated siRNA using a secreted luciferase assay. Biotechniques 42, 599–605 (2007).

    Article  CAS  Google Scholar 

  11. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100, 6347–6352 (2003).

    Article  CAS  Google Scholar 

  12. Vargason, J.M., Szittya, G., Burgyan, J. & Hall, T.M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    Article  CAS  Google Scholar 

  13. Jin, J., Cid, M., Poole, C.B. & McReynolds, L.A. Protein mediated miRNA detection and siRNA enrichment using p19. Biotechniques 48, xvii–xxiii (2010).

    Article  CAS  Google Scholar 

  14. Davis, M.G. & Huang, E.S. Transfer and expression of plasmids containing human cytomegalovirus immediate-early gene 1 promoter-enhancer sequences in eukaryotic and prokaryotic cells. Biotechnol. Appl. Biochem. 10, 6–12 (1988).

    CAS  PubMed  Google Scholar 

  15. Chu, M., Desvoyes, B., Turina, M., Noad, R. & Scholthof, H.B. Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266, 79–87 (2000).

    Article  CAS  Google Scholar 

  16. Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    Article  CAS  Google Scholar 

  17. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  Google Scholar 

  18. Babitzke, P., Granger, L., Olszewski, J. & Kushner, S.R. Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J. Bacteriol. 175, 229–239 (1993).

    Article  CAS  Google Scholar 

  19. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  Google Scholar 

  20. Jackson, A.L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  Google Scholar 

  21. Spankuch, B. et al. Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J. Natl. Cancer Inst. 96, 862–872 (2004).

    Article  Google Scholar 

  22. Lee, S.K. et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 106, 818–826 (2005).

    Article  CAS  Google Scholar 

  23. Sugiyama, R., Habu, Y., Ohnari, A., Miyano-Kurosaki, N. & Takaku, H. RNA interference targeted to the conserved dimerization initiation site (DIS) of HIV-1 restricts virus escape mutation. J. Biochem. 146, 481–489 (2009).

    Article  CAS  Google Scholar 

  24. Jayaprakash, A.D., Jabado, O., Brown, B.D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    Article  CAS  Google Scholar 

  25. Weinberg, D.E., Nakanishi, K., Patel, D.J. & Bartel, D.P. The inside-out mechanism of Dicers from budding yeasts. Cell 146, 262–276 (2011).

    Article  CAS  Google Scholar 

  26. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  27. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  Google Scholar 

  28. Korb, M. et al. The Innate Immune Database (IIDB). BMC Immunol. 9, 7 (2008).

    Article  Google Scholar 

  29. Tenllado, F., Martinez-Garcia, B., Vargas, M. & Diaz-Ruiz, J.R. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol. 3, 3 (2003).

    Article  Google Scholar 

  30. Zhao, H.F. et al. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion. Nat. Methods 2, 967–973 (2005).

    Article  CAS  Google Scholar 

  31. Xiang, S., Fruehauf, J. & Li, C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 24, 697–702 (2006).

    Article  CAS  Google Scholar 

  32. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  Google Scholar 

  33. Princen, K., Hatse, S., Vermeire, K., De Clercq, E. & Schols, D. Establishment of a novel CCR5 and CXCR4 expressing CD4+ cell line which is highly sensitive to HIV and suitable for high-throughput evaluation of CCR5 and CXCR4 antagonists. Retrovirology 1, 2 (2004).

    Article  Google Scholar 

  34. Dancz, C.E., Haraga, A., Portnoy, D.A. & Higgins, D.E. Inducible control of virulence gene expression in Listeria monocytogenes: temporal requirement of listeriolysin O during intracellular infection. J. Bacteriol. 184, 5935–5945 (2002).

    Article  CAS  Google Scholar 

  35. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    Article  CAS  Google Scholar 

  36. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Carrington (Donald Danforth Plant Science Center) for the p19 clone, C. Zhang and G. Ruvkun (Massachusetts General Hospital) for L4440 plasmid and HT115(DE3) strain, S. Kushner (University of Georgia) for SK7622 strain, D. Higgins (Harvard Medical School) for pLIV-1 plasmid, and S. Ranjbar (Boston Children's Hospital) for HIV strains and cell lines. We thank L.M. Mazzola, J.M. Bybee and D.B. Munafo from New England Biolabs for assistance with RNA deep sequencing and Z. Ansara for technical help. We thank A. Hochschild (Harvard Medical School) for suggestions and critical reading of the manuscript and Lieberman Lab members for technical assistance, helpful discussions and comments on the manuscript. This work was supported by National Institutes of Health grant AI087431 (J.L.) and a GSK-IDI Alliance fellowship (L.H.).

Author information

Authors and Affiliations

Authors

Contributions

L.H. and J.L. designed the experiments with advice from J.J., L.M., and P.D. J.J. and L.M. prepared p19 beads and RNA deep sequencing libraries. P.D. constructed E. coli mutant strains. E.K. performed siRNA comparison and macrophage transfection experiments. L.H. performed all other experiments. L.H. and J.L. wrote the paper.

Corresponding author

Correspondence to Judy Lieberman.

Ethics declarations

Competing interests

J.J. and L.M. are employees of New England Biolabs, a company that sells deep sequencing kits, p19 and other proteins for RNA and DNA research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 and 5–8 (PDF 1425 kb)

Supplementary Table 4

Significantly changed genes (XLSX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Jin, J., Deighan, P. et al. Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol 31, 350–356 (2013). https://doi.org/10.1038/nbt.2537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing