Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA processing enables predictable programming of gene expression

Abstract

Complex interactions among genetic components often result in variable systemic performance in designed multigene systems1,2. Using the bacterial clustered regularly interspaced short palindromic repeat (CRISPR) pathway3,4 we develop a synthetic RNA-processing platform, and show that efficient and specific cleavage of precursor mRNA enables reliable and predictable regulation of multigene operons. Physical separation of linked genetic elements by CRISPR-mediated cleavage is an effective strategy to achieve assembly of promoters, ribosome binding sites, cis-regulatory elements, and riboregulators into single- and multigene operons with predictable functions in bacteria. We also demonstrate that CRISPR-based RNA cleavage is effective for regulation in bacteria, archaea and eukaryotes. Programmable RNA processing using CRISPR offers a general approach for creating context-free genetic elements and can be readily used in the bottom-up construction of increasingly complex biological systems in a plug-and-play manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CRISPR RNA-processing system allows engineering of standard genetic elements in various contexts.
Figure 2: RNA processing enables design of operonic systems.
Figure 3: Applications of CRISPR RNA processing to the predictable engineering of complex regulatory systems.

Similar content being viewed by others

References

  1. Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    Article  CAS  Google Scholar 

  2. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  Google Scholar 

  3. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  Google Scholar 

  4. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article  CAS  Google Scholar 

  5. Culler, S.J., Hoff, K.G. & Smolke, C.D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    Article  CAS  Google Scholar 

  6. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  Google Scholar 

  7. Al-Attar, S., Westra, E.R., van der Oost, J. & Brouns, S.J.J. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol. Chem. 392, 277–289 (2011).

    Article  CAS  Google Scholar 

  8. Karginov, F.V. & Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37, 7–19 (2010).

    Article  CAS  Google Scholar 

  9. Gesner, E.M., Schellenberg, M.J., Garside, E.L., George, M.M. & Macmillan, A.M. Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat. Struct. Mol. Biol. 18, 688–692 (2011).

    Article  CAS  Google Scholar 

  10. Sashital, D.G., Jinek, M. & Doudna, J.A. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Mol. Biol. 18, 680–687 (2011).

    Article  CAS  Google Scholar 

  11. Lintner, N.G. et al. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J. Biol. Chem. 286, 21643–21656 (2011).

    Article  CAS  Google Scholar 

  12. Carte, J., Pfister, N.T., Compton, M.M., Terns, R.M. & Terns, M.P. Binding and cleavage of CRISPR RNA by Cas6. RNA 16, 2181–2188 (2010).

    Article  CAS  Google Scholar 

  13. Brouns, S.J.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  Google Scholar 

  14. Deana, A., Celesnik, H. & Belasco, J.G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451, 355–358 (2008).

    Article  CAS  Google Scholar 

  15. Cases, I. & de Lorenzo, V. Promoters in the environment: transcriptional regulation in its natural context. Nat. Rev. Microbiol. 3, 105–118 (2005).

    Article  CAS  Google Scholar 

  16. Rocha, E.P.C. The organization of the bacterial genome. Annu. Rev. Genet. 42, 211–233 (2008).

    Article  CAS  Google Scholar 

  17. Zaslaver, A., Baugh, L.R. & Sternberg, P.W. Metazoan operons accelerate recovery from growth-arrested states. Cell 145, 981–992 (2011).

    Article  CAS  Google Scholar 

  18. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  Google Scholar 

  19. Martin, V., Pitera, D., Withers, S. & Newman, J. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  Google Scholar 

  20. Wek, R.C., Sameshima, J.H. & Hatfield, G.W. Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K12. J. Biol. Chem. 262, 15256–15261 (1987).

    CAS  PubMed  Google Scholar 

  21. Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B. & Arkin, A.P. Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8, 447–454 (2012).

    Article  CAS  Google Scholar 

  22. Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. & Arkin, A.P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. USA 108, 8617–8622 (2011).

    Article  CAS  Google Scholar 

  23. Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (-–)sTRSV sequence. Biochemistry 28, 4929–4933 (1989).

    Article  CAS  Google Scholar 

  24. Daròs, J.A., Marcos, J.F., Hernández, C. & Flores, R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc. Natl. Acad. Sci. USA 91, 12813–12817 (1994).

    Article  Google Scholar 

  25. Dunn, J.J. & Studier, F.W. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. Proc. Natl. Acad. Sci. USA 70, 3296–3300 (1973).

    Article  CAS  Google Scholar 

  26. Espéli, O., Moulin, L. & Boccard, F. Transcription attenuation associated with bacterial repetitive extragenic BIME elements1. J. Mol. Biol. 314, 375–386 (2001).

    Article  Google Scholar 

  27. Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Article  CAS  Google Scholar 

  28. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  29. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  Google Scholar 

  30. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  31. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  32. Leveau, J.H. & Lindow, S.E. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria. J. Bacteriol. 183, 6752–6762 (2001).

    Article  CAS  Google Scholar 

  33. Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  34. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of BIOFAB, International Open Facility Advancing Biotechnology, for distributing genetic parts, and J. Dueber, M. Lee and H. Lee (University of California, Berkeley) for providing the yeast vector. This work was supported by the US National Science Foundation (SynBERC, NSFEEC-0540879, L.Q. and A.P.A.), Department of Energy through Laboratory Directed Research and Development (DE-AC02-05CH11231d, L.Q., W.S. and A.P.A.) and Howard Hughes Medical Institute (R.E.H. and J.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

L.Q., A.P.A. and J.A.D. conceived of the research; L.Q., R.E.H., W.S., J.A.D. and A.P.A. designed the study; L.Q., R.E.H. and W.S. performed the experiments; L.Q., R.E.H., J.A.D. and A.P.A. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Adam P Arkin.

Ethics declarations

Competing interests

L.Q., R.E.H., J.A.D. and A.P.A. have filed a related patent application (US application 61/679,397, filed on 3 August 2012).

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–8 (PDF 7970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Haurwitz, R., Shao, W. et al. RNA processing enables predictable programming of gene expression. Nat Biotechnol 30, 1002–1006 (2012). https://doi.org/10.1038/nbt.2355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing