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Systems biology aims to provide a mecha-
nistic understanding of biological sys-

tems from high-throughput data. Besides its 
intrinsic scientific value, this understanding 
will accelerate product design and develop-
ment, facilitate health policy decisions and 
may reduce the need for long-term clinical 
trials. For this to happen, the knowledge gen-
erated by systems biology has to become suffi-

ciently trustworthy for the empirical approach 
underlying long-term clinical trials to be sup-
planted by an approach in which mechanism 
and mechanistic understanding is a driver for 
decisions. This raises fundamental questions of 
how to evaluate the veracity of predictions from 
systems biology models and how to construct 
mechanistic models that best reflect biological 
phenomena—questions that are of interest to 
both academia and industry.

High-throughput verification of systems 
biology
In 2009, a report1 from the US National 
Academy of Sciences (Washington, DC) 
highlighted four areas where biology could 
make major contributions: food production, 
improvement of human health, optimized 
biofuels and ecosystem restoration. Addressing 
these challenges requires not only multidisci-
plinary teams to analyze high-throughput 
quantitative data, but also verification of the 
conclusions from such analyses.

One of the obvious steps in raising the con-
fidence of high-throughput data sets is to have 
better experimental and analytical techniques 
that yield accurate and reproducible data with 
known error rates. For example, verification of 
mass spectrometry proteomic measurements 
has proven difficult because the measurements 
can depend strongly on sample preparation, 
the method of detection and the biologi-
cal context in which the measurements were 
made. One approach to address this issue has 
been the creation of databases such as Peptide 
Atlas2, a genome-mapped library of peptides 

derived from liquid chromatography tandem 
mass spectrometry proteomics experiments 
in multiple organisms that lends itself to easy 
navigation using software tools.

Another example of recent efforts to ensure 
data quality and reproducibility is the area of 
genome-wide association studies (GWAS), 
where researchers take an unbiased survey of 
common single-nucleotide polymorphisms 
(SNPs) across the genome and look for alleles 
whose presence correlates with phenotypes 
such as disease. Hundreds of gene candidates 
have been found in just a few years, although 
most have only a modest effect3. The difficulty 
is that slight differences in the genetic back-
grounds of different populations or unknown 
pairs of relatives in a sample introduce tiny 
statistical shifts that pose the risk of appear-
ing significant for some of the millions of 
SNPs analyzed. In response to these difficul-
ties, researchers have adopted a well-defined, 
quality-control process that can be applied 
to new data using readily available software 
tools. Also, many journals are starting to 
require replication of results for publication 
of GWAS papers, and in the best scenario, 
another research group replicates the associa-
tion study in a different cohort with a similar 
phenotype4.

The complex networks that translate geno-
type into phenotype are also highly sensitive 
to biological context and environmental influ-
ences. Typically, context and environment are 
mediated by signaling networks, for example, 
through the action of protein kinases. To verify 
predictions, it is necessary to understand how 
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Collaborative competitions in which communities of researchers compete to solve challenges may facilitate more 
rigorous scrutiny of scientific results.
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confidence of the homology. New methods 
need to be developed to police these errors in 
databases and avoid the propagation of incor-
rect information11.

Naturally, it would be better to prevent mis-
takes from entering into the literature or the 
databases in the first place. But peer review 
and human curation can only address some of 
the inaccuracies that are contained in papers 
or databases. Peer reviewers mainly judge the 
suitability of data collection protocols, accuracy 
of inferences and ideas, innovation, the logic 
of the argument and the consistency of the 
material being reviewed. However, it is often 
unfeasible or difficult for reviewers to assess 
the quality of data itself or the performance 
of the analytical methodologies described in 
a manuscript. This is in part due to the lack of 
a rigorous characterization of error rates and 
data quality in manuscripts. Thus, a method-
ology is needed for verifying the results and 
claims in systems biology.

The power of crowds
In this respect, crowdsourcing—engaging an 
interested community to collaboratively solve a 
problem—may be a fruitful strategy for assess-
ing the quality of analyses and predictions from 
high-throughput data. As one example of such 
an approach, blogs and tweets can gather siz-
able amounts of comments on controversial 
papers12. For instance, as the popular media 
were covering a paper that identified genomic 
loci predicting human lifespan with 77% accu-
racy, scientific bloggers were already raising 
doubts about the methodology of the paper and 
the lack of rigor of its results, which blunted 
enthusiasm for the publication and led to its 
eventual retraction13.

Crowdsourcing has also been used to assess 
the validity of research in academic efforts such 
as CASP (The Critical Assessment of Protein 
Structure Prediction14; http://predictioncenter.
org/), CAPRI (The Critical Assessment of 
Prediction of Interactions; http://www.ebi.ac.uk/
msd-srv/capri), BioCREATIVE (http://www.
biocreative.org/) and DREAM (The Dialogue 
on Reverse Engineering Assessments and 
Methods15; http://www.thedream-project.org/) 
as well as commercially organized assessments 
like Kaggle (http://www.kaggle.com/) and 
Innocentive (http://www.innocentive.com/). 
These undertakings are organized around 
‘challenges’ in which an interested community 
competes to verify methodologies against 
carefully chosen benchmarks. We briefly discuss 
below two projects that illustrate the power of 
this approach, CASP (a pioneering project 
on collaborative competition) and DREAM 
(which deals with the assessment of methods 
for systems biology).

the peer review system can objectively assess 
the quality of the high-throughput data and 
the validity of the sophisticated analyses and 
interpretations that nowadays pervade systems 
biology.

Web-based publishing has created new 
mechanisms for gauging the reactions to a 
paper in the same journal in which it is pub-
lished. The discussions and opposing opinions 
about an article considerably enrich it, or at 
least they could if they were more frequently 
used. In general, participation in open discus-
sions of papers has not attracted the interest of 
many scientists, except for a few controversial 
papers. One way to improve reader feedback on 
journal websites may be to use a unique author 
identifier9 that is assigned to researchers early 
in their career so that their online comments 
and reviews can be taken into account during 
evaluations, in addition to their reviewed pub-
lications.

The proliferation of publications, which is 
a sign of the faster pace of discovery, may also 
dilute important discoveries as they may be split 
across several papers. One of the responses to 
this reality has been the creation of annotated 
biological databases (pioneered by SwissProt 
for over 20 years) based on the peer-reviewed 
literature. For example, Biobase (http://www.
biobase-international.com/) annotates litera-
ture data, having processed some 150,000 refer-
ences on the human proteome; curation is done 
by trained and paid curators. A similar effort 
involving massive human curation is being 
pursued by Ingenuity (http://www.ingenuity.
com/). But, comparable with some of the sub-
jectivity that exists in the peer review process, 
personal biases and different conclusions may 
be drawn for the same paper, even by highly 
skilled, rigorously selected curators who follow 
standard operating procedures.

As the explosive growth of biomedical data 
strains the capacity of human curation, com-
putational methods to mine the literature are 
becoming increasingly important10. But auto-
matic text mining has its own weaknesses, 
such as the difficulty of extracting information 
from figures or tables, and the ambiguities of 
interpretation inherent in natural language. 
Biological databases, whose information is 
usually subjected to some human curation, 
contain data and annotations that should be 
scrutinized for accuracy. In genomic data-
bases, inadvertent annotation errors can be 
propagated when the putative function of a 
gene is inferred based on sequence homology. 
For example, current methods for biochemical 
annotation of metabolic pathways, especially 
for microbes, are primarily based on sequence 
homology and can be inaccurate because most 
annotations do not provide a quantification of 

a network functions and to analyze its dynami-
cal changes under certain conditions. A reli-
able source of quantitative data allows such 
predictions through the probabilistic integra-
tion of different sources of evidence, as in the 
case of NetPhorest5 (which creates an index to 
measure the specificity of protein kinases) or 
NetworKIN6 (which predicts the interactions 
between kinases and the substrate proteins they 
phosphorylate using cellular contextual infor-
mation). When assessing the performance of 
such biological classifiers or predictions from 
models, it is essential to design experiments 
that reproduce the biological context as closely 
as possible, and to make use of independent 
data to corroborate the predictions. This is also 
the case for the underlying proteomics data.

Although computational methods and high-
throughput experiments can be used to map 
interactions at the genome-wide level, they are 
often characterized by substantial error rates. 
Thus, many of the predicted interactions may 
be incorrect. Critically, these errors and their 
sources can be identified, quantified and cor-
rected as our knowledge of the underlying sys-
tem grows. Notably, for many applications it 
is not crucial that all predicted interactions be 
correct. For example, for the purpose of identi-
fying master regulators—genes that orchestrate 
regulatory programs in transcriptional regula-
tory networks—it does not matter whether the 
researcher knows which transcription factor–
target interactions are correct because, if a suf-
ficiently high percentage of the interactions are 
correct, then in all likelihood the correct regu-
lator will be predicted7.

Traditional approaches to validation are not 
particularly amenable to testing hundreds or 
thousands of potential interactions. However, 
verifying all the detailed mechanisms conjec-
tured to underlie a biological system may be 
unnecessary until the model predicts some-
thing biologically important. Moreover, a 
hierarchical validation could be possible, 
where many predictions are validated at low 
resolution, and a few of them then investigated 
in greater detail.

Limitations of peer review for validation
Traditional peer review is widely considered 
to be one of the most important mecha-
nisms for quality control of scientific papers. 
Nevertheless, as the number of published 
papers increases, the peer review system is 
under increasing strain. Indeed, it has been 
estimated from PubMed that in the past decade 
the growth rate of scientific publications was 
5.6% per year, or equivalently, a doubling time 
of 13 years8. This results in increased burdens 
on peer reviewers who get little reward for their 
efforts. Furthermore, it is questionable whether 
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needs for validation as academia, a method-
ology for verifying research is needed in the 
industrial setting that recognizes both speed 
and protection of proprietary data constraints, 
as well as the importance of market consider-
ations and consumer protection. IBM and PMI 
have proposed a scheme called IMPROVER 
(industrial methodology for process verifica-
tion of research; Box 1).

Applying this methodology first requires 
identifying the building blocks of a research 
workflow. Building blocks are basically small 
pieces of a big research program. Some might 
involve generating biological measurements, 
others analyzing data. The validity of these 
measurements can be assured with quality-
assessment and best-practice processes that 
are familiar to industry. The idea behind 
IMPROVER is to test each key method at 
crucial junctures of a research workflow by 
posing challenges designed to see whether or 
not the process works at the necessary level of 
accuracy (Box 1 and Fig. 2). The challenges 
can be internal to a company, or if they are of 
interest to a broader community that may ben-
efit from its participation, they can be public, 
similar to DREAM or CASP. For such external 
challenges, the organizers will need to establish 
the same sorts of conditions that have made 
existing programs successful. In particular, for 
independent researchers to participate, they 
will need incentives, which could be recogni-
tion or co-authorship, monetary incentives 
(for instance, as used in the Netflix Prize20) 
or access to high-value data or experimental 
validation efforts. The workflow model under-
lying this methodology reflects an engineer-
ing mindset more common in industry, where 
research is aimed at a concrete fixed goal, but 
not particularly adapted for completely open-
ended discovery, as in academia.

IMPROVER could start a trend by which 
eventually even the academic community 
would ask for independent verification of its 
core technologies and methods. Today, inde-
pendent verification relies mainly on govern-
ment agencies whose criteria for assessment are 
not always transparent to the general public.

Finding a robust signature for disease diag-
nosis is an example of a challenge that might 
be of interest to the wider biomedical research 
community, as well as being essential in many 
industrial research workflows for stratification 
of populations, early detection of disease and 
personalized medicine. Pioneering work21 sug-
gested that molecular classification of tumors, 
and by extension other diseases, could be 
more accurate than morphological classifica-
tion. Similarly, success in predicting survival, 
disease progression and response to drugs 
could aid in stratifying patients and choosing 

This is a difficult problem because currently 
no true gold standard exists for real biological 
networks. Data simulated with mathematical 
models that are designed to be as biologically 
plausible as possible can be used, as simulated 
data assure a systematic, rigorous assessment16. 
But the use of simulated data does not ensure 
that the challenge is necessarily realistic17. 
Many different methods, including regression, 
mutual information, correlation, Bayesian net-
works and others18, have been used to address 
this challenge. Importantly, combining indi-
vidual predictions results in a solution that is 
highly robust and usually the most accurate, 
demonstrating the need for tackling complex 
problems as a community18,19.

For both CASP and DREAM, as well as for 
most similar efforts, the goal is not about find-
ing a single best method, but rather, reaching 
a better understanding of the strengths and 
weaknesses of these methods to enable prog-
ress in their respective disciplines.

Meeting the needs of industry
In view of the limited ability of peer review 
to assure the validity of complex scientific 
results in the area of systems biology (Fig. 1), 
and recognizing the power of communities 
to assess methodological aspects of scientific 
research, researchers at IBM and Philip Morris 
International (PMI; Neuchâtel, Switzerland) 
have been collaborating on a vision for qual-
ity assurance in systems biology research. 
Although industry shares many of the same 

CASP is a contest begun in 1994 to rank 
the performance of methods for predicting 
the three-dimensional structure of proteins 
based on their amino acid sequence. It is the 
first of the many biological community-based 
assessment efforts to emerge. The nine CASP 
competitions to date have uncovered signifi-
cant stumbling blocks in the field of protein 
structure prediction, and they have enabled 
notable progress.

DREAM is a project designed to assess model 
predictions and pathway inference algorithms 
in systems biology. Like CASP, DREAM is 
structured in the form of challenges presented 
to the community, comprising open problems 
whose solutions (the ‘gold standards’) are 
known to the organizers but not to the partici-
pants. Participants submit their predictions of 
the solutions, which are evaluated by the orga-
nizers and eventually discussed in a conference. 
After the conference, all the data, predictions 
and gold standards are openly available to the 
community. This experience has shown that a 
rigorous scrutiny of scientific research based 
on community involvement is possible. The 
outcomes of the DREAM challenges highlight 
areas in which clear advances in systems biol-
ogy have been made or need to be made.

Several of the challenges posed by DREAM 
address the problem of ‘network inference’. In 
these challenges, teams of researchers try to 
infer gene-regulatory or signaling networks 
from gene expression or phosphoproteomic 
profiles undergoing various perturbations. 
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Figure 1 Current approaches to systems biology verification. Different paths for reaching systems 
biology verification are represented, both for academia (blue) and for industry (red). Black represents 
pathways common to industry and academia. The color of the rectangles represent the grounds on 
which the assessment of systems biology results are based: mostly on innovation (green), mostly 
robustness (orange) and both innovation and robustness (yellow). The thickness of the arrows represents 
the current predominant pathway.
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These challenges, as well as many others that 
can be envisioned, address the core interests of 
many industries. These industries could benefit 
from the power of crowds to find strategies to 
address their problems. In turn, the community 
will have the opportunity to try their methods 
on new data, participate in studies that address 
grand challenges in biomedical research and 
close the sometimes open loop between aca-
demia and industry.

Conclusions
The abundance of high-throughput and quan-
titative data in systems biology creates both 
opportunities and difficulties. In particular, 
although thousands of predictions may be 
generated, most are often left unverified. How 
worthwhile can these predictions be without 
methods for high-throughput verification? 
Several avenues to verification of systems 
biology results exist or are emerging in both 
academia and industry (Fig. 1).

In this article, we have proposed that sys-
tems biology results can be verified using 
community-wide challenges that test specific 
methodologies using the power of crowds. 
Assessing the results of these challenges 
needs to be done under a rigorous statistical 
framework. It is curious that little has been 
done in the area of verification of industrial 
research, especially as statistical quality con-
trol has enabled considerable improvements to 
industrial manufacturing. If challenge-based 
verification processes, such as IMPROVER, 
CASP and DREAM, become routine, it is 
likely that industrial research workflows will 
see increased efficiency in the generation 
of applied scientific results and decreased 
expense per verified result.

Challenge-based verification processes may 
also help cope with the explosive growth of sci-
entific publications. This growth taxes the peer 
review system, especially in systems biology 
where assessments of the robustness of a com-
plex methodology and the sanity of large data 
sets are often not performed during the peer 
review process. We argue that challenge-based 
verification of scientific results should ide-
ally be done before submission to a reviewer. 
This could provide better scrutiny of results, 
because blind tests tend to eliminate some of 
the subjective bias of interpretation of results 
during peer review.

Finally, we should stress that an over-
crowded field of scientific publications and 
a lack of systematic verification of systems 
biology predictions, although problematic, 
are consequences of something fundamen-
tally positive, because they reflect the fact 
that science is moving at a fast pace. We hope 
that some of the specific solutions we have 

industrial applications would be the explora-
tion of the limits of translation of data and 
conclusions from rodents to humans. The 
main scientific question here is how accurately 
observations from in vivo and in vitro rodent 
models can be translated to a human context. 
Participants would be given proteomics or 
expression profile changes in cultured cells, 
from a particular tissue from both rodents 
and humans, in response to an agent such as 
a drug. The challenge would be to predict the 
response in human cells to a new agent, on the 
basis of expression changes in rodent cells. One 
essential element in designing such a challenge 
is choosing the agent and the cell lines to give a 
diversity of perturbations that sufficiently cover 
the maximum number of biological processes. 
In addition to finding useful methodologies, 
the goal of this challenge would be to provide 
insight and understanding regarding the range 
of applicability of the translation concept.

treatments. For a signature to be robust, it will 
probably need to be more than just a single bio-
marker or gene signature. For example, it could 
be a set of master regulators of a tumor type7 
or a combination of clinical data, gene expres-
sion data, pathway information and genomic 
structural variants22,23. Integrative network 
markers and network structures and dynam-
ics will increasingly become a primary focus 
for both detection and treatment of complex 
diseases. In this type of challenge, participants 
would be assessed on their ability to identify 
disease phenotypes based on gene expression 
data and, possibly, clinical information. The 
training set would perhaps not be given explic-
itly, with participants needing to rely on vast 
publicly available gene expression databases, 
such as the National Center for Biotechnology 
Information’s Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/).

A second challenge that may find many 

Box 1  IMPROVER as a means of assessing complex processes in 
industrial research

The IMPROVER methodology verifies research workflows (top row; Fig. 2) by decomposing 
them into discrete building blocks (middle row; Fig. 2), which might represent a method, 
process or algorithm. IMPROVER is useful in an industrial research organization to assess 
the risk of a workflow by identifying problematic building blocks that may be, for instance, 
inaccurate or nonrobust. The methodology uses crowdsourcing to verify a building block 
by posing challenges (lower row; Fig. 2) to improve or derive solutions to that step in the 
workflow. In an internal challenge, verification is accomplished by a challenge within a 
company or organization. Participants’ submissions are compared to a desired reference 
output (known as a gold standard) by a trusted referee who is blinded to the expected 
results. The building block is verified if the two results match within a predetermined 
difference criterion. The purpose of the example internal challenge (shown in blue) is 
to verify transcriptome data by comparing measurements with a reference data set of 
known quality to ensure sufficiently low noise level. In an external challenge, data are 
disseminated to participants outside the organization. Submissions are collected and 
compared to the reference data set by a trusted referee who is again blinded to the 
expected results. The purpose of the example external challenge (shown in red) is to verify 
whether discovered disease signatures in the transcriptome data are sufficient to predict 
known disease phenotypes. 

Research
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Research
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Figure 2  Example application of IMPROVER for verification of a plausible research workflow.
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