Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of protein-protein interactions in live cells using light

Abstract

Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GI and FKF1 interact in response to blue light.
Figure 2: Light-induced recruitment of FKF1-Rac1 to the plasma membrane and formation of lamellipodia.
Figure 3: Light-induced activation of transcription.

Similar content being viewed by others

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Schroder-Lang, S. et al. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 4, 39–42 (2007).

    Article  Google Scholar 

  3. Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    Article  CAS  Google Scholar 

  4. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  5. Sawa, M., Nusinow, D.A., Kay, S.A. & Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261–265 (2007).

    Article  CAS  Google Scholar 

  6. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. & Bartel, B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340 (2000).

    Article  CAS  Google Scholar 

  7. Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R. & Kay, S.A. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306 (2003).

    Article  CAS  Google Scholar 

  8. Zikihara, K. et al. Photoreaction cycle of the light, oxygen, and voltage domain in FKF1 determined by low-temperature absorption spectroscopy. Biochemistry 45, 10828–10837 (2006).

    Article  CAS  Google Scholar 

  9. Huq, E., Tepperman, J.M. & Quail, P.H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789–9794 (2000).

    Article  CAS  Google Scholar 

  10. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  Google Scholar 

  11. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

  12. Magee, T. & Marshall, C. New insights into the interaction of Ras with the plasma membrane. Cell 98, 9–12 (1999).

    Article  CAS  Google Scholar 

  13. Kim, W.Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356–360 (2007).

    Article  CAS  Google Scholar 

  14. Kasahara, M. et al. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol. 129, 762–773 (2002).

    Article  CAS  Google Scholar 

  15. Ridley, A.J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  16. Xu, X., Barry, D.C., Settleman, J., Schwartz, M.A. & Bokoch, G.M. Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. J. Biol. Chem. 269, 23569–23574 (1994).

    CAS  PubMed  Google Scholar 

  17. Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    Article  CAS  Google Scholar 

  18. Wen, W., Meinkoth, J.L., Tsien, R.Y. & Taylor, S.S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).

    Article  CAS  Google Scholar 

  19. Giniger, E., Varnum, S.M. & Ptashne, M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40, 767–774 (1985).

    Article  CAS  Google Scholar 

  20. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4–VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  Google Scholar 

  21. Kaang, B.K., Kandel, E.R. & Grant, S.G. Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10, 427–435 (1993).

    Article  CAS  Google Scholar 

  22. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  Google Scholar 

  23. Farrar, M.A., Alberol, I. & Perlmutter, R.M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    Article  CAS  Google Scholar 

  24. Wiens, K.M., Lin, H. & Liao, D. Rac1 induces the clustering of AMPA receptors during spinogenesis. J. Neurosci. 25, 10627–10636 (2005).

    Article  CAS  Google Scholar 

  25. Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  Google Scholar 

  26. Satoh, M. et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 103, 7432–7437 (2006).

    Article  CAS  Google Scholar 

  27. Liu, M., Komiyama, M. & Asanuma, H. Design of light-switchable phage promoter for efficient photo-regulation of gene-expression. Nucleic Acids Symp. Ser. (Oxf) 49, 283–284 (2005).

    Article  Google Scholar 

  28. Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    Article  CAS  Google Scholar 

  29. Dyer, B.W., Ferrer, F.A., Klinedinst, D.K. & Rodriguez, R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal. Biochem. 282, 158–161 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Imaizumi (Scripps Research Institute) for providing FKF1 and GI plasmids; T.-S. Tseng and W.R. Briggs (Carnegie Institution, Stanford University) for providing phototropin plasmids; Y. Gotoh (University of Tokyo) for providing plasmids encoding human Rac1 mutants; and M. Endo and S. Sugano for helpful advice. This study is supported by an National Institutes of Health Pioneer Award, the Simons Foundation and by gifts from L. Miller, B. and F. Horowitz and M. MCafferey to R.E.D., the Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad to M.Y. and Stanford Institutes of Medicine Summer Research Program to B.H.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and R.E.D. designed research and wrote manuscript; M.Y. performed plasmid construction, live-cell imaging and data analysis; M.Y. and A.M.S. conducted mutagenesis of FKF1; M.Y. and B.H. performed immunocytochemistry and luciferase assays.

Corresponding author

Correspondence to Ricardo E Dolmetsch.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 and Supplementary Tables 1, 2 (PDF 963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazawa, M., Sadaghiani, A., Hsueh, B. et al. Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27, 941–945 (2009). https://doi.org/10.1038/nbt.1569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing