Measurement of Jupiter’s asymmetric gravity field

  • Nature volume 555, pages 220222 (08 March 2018)
  • doi:10.1038/nature25776
  • Download Citation


The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator1. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere2,3. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers4,5, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    The equilibrium of a rotating body of arbitrary density. Astrophys. Space Sci. 29, 161–178 (1974)

  2. 2.

    Gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999)

  3. 3.

    Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676–680 (2013)

  4. 4.

    . et al. Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555, (2018)

  5. 5.

    et al. A suppression of differential rotation in Jupiter’s deep interior. Nature 555, (2018)

  6. 6.

    , & Physics of the Solar System: Dynamics and Evolution, Space Physics, and Spacetime Structure 35–61 (Springer, 2012)

  7. 7.

    et al. The atmosphere of Jupiter: an analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 8721–8727 (1981)

  8. 8.

    , & A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)

  9. 9.

    , , & Stochastic gravitational wave background: upper limits in the 10−6 to 10−3 Hz band. Astrophys. J. 599, 806–813 (2003)

  10. 10.

    , & Doppler tracking of spacecraft with multifrequency links. Astron. Astrophys. 269, 608–616 (1993)

  11. 11.

    , , & Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2004)

  12. 12.

    Effects of differential rotation on the gravitational figures of Jupiter and Saturn. Icarus 52, 509–515 (1982)

  13. 13.

    & A preliminary Jupiter model. Astrophys. J. 820, 80 (2016)

  14. 14.

    , , & Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, L01204 (2010)

  15. 15.

    et al. Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821–825 (2017)

  16. 16.

    et al. Jupiter gravity field estimated from the first two Juno orbits. Geophys. Res. Lett. 44, 4694–4700 (2017)

  17. 17.

    , , & A comprehensive orbit reconstruction for the Galileo prime mission. Adv. Astronaut. Sci. 103, 465–486 (1999)

  18. 18.

    Jupiter satellite ephemeris file jup310.bsp (2009)

  19. 19.

    et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of an expanded core. Geophys. Res. Lett. 44, 4649–4659 (2017)

  20. 20.

    et al. Probing the depth of Jupiter’s Great Red Spot with the Juno gravity experiment. Icarus 267, 232–242 (2016)

  21. 21.

    , & The effect of Jupiter oscillations on Juno gravity measurements. Icarus 282, 174–182 (2017)

  22. 22.

    & Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for deep space tracking. Radio Sci. 48, 111–117 (2013)

  23. 23.

    & Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. Space Phys. 108, 1276 (2003)

  24. 24.

    & Divine, N. Evaluation of Jupiter longitudes in System III (1965). Geophys. Res. Lett. 4, 65–68 (1977)

Download references


This research was carried out at the Sapienza University of Rome, University of Bologna and University of Pisa under the sponsorship of the Italian Space Agency; at the Jet Propulsion Laboratory, California Institute of Technology under a NASA contract; by the Southwest Research Institute under a NASA contract. Support was provided also by the Israeli Space Agency (Y.K. and E.G.) and the Centre National d'Études Spatiales (T.G. and Y.M.). All authors acknowledge support from the Juno Project.

Author information


  1. Sapienza Università di Roma, 00184 Rome, Italy

    • L. Iess
    • , D. Durante
    •  & P. Racioppa
  2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

    • W. M. Folkner
    • , M. Parisi
    • , D. R. Buccino
    • , R. Park
    •  & S. M. Levin
  3. Weizmann Institute of Science, Rehovot 76100, Israel

    • Y. Kaspi
    •  & E. Galanti
  4. Observatoire de la Côte d’Azur, 06304 Nice, France

    • T. Guillot
    •  & Y. Miguel
  5. Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA

    • W. B. Hubbard
  6. California Institute of Technology, Pasadena, California 91125, USA

    • D. J. Stevenson
    •  & H. Cao
  7. Southwest Research Institute, San Antonio, Texas 78238, USA

    • J. D. Anderson
    •  & S. J. Bolton
  8. Università di Bologna, 47100 Forlì, Italy

    • L. Gomez Casajus
    • , P. Tortora
    •  & M. Zannoni
  9. Università di Pisa, 56127 Pisa, Italy

    • A. Milani
    •  & D. Serra
  10. University of Zurich, 8057 Zurich, Switzerland

    • R. Helled
  11. Cornell University, Ithaca, New York 14853, USA

    • J. I. Lunine
  12. University of California, Berkeley, California 94720, USA

    • B. Militzer
    •  & S. Wahl
  13. NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • J. E. P. Connerney


  1. Search for L. Iess in:

  2. Search for W. M. Folkner in:

  3. Search for D. Durante in:

  4. Search for M. Parisi in:

  5. Search for Y. Kaspi in:

  6. Search for E. Galanti in:

  7. Search for T. Guillot in:

  8. Search for W. B. Hubbard in:

  9. Search for D. J. Stevenson in:

  10. Search for J. D. Anderson in:

  11. Search for D. R. Buccino in:

  12. Search for L. Gomez Casajus in:

  13. Search for A. Milani in:

  14. Search for R. Park in:

  15. Search for P. Racioppa in:

  16. Search for D. Serra in:

  17. Search for P. Tortora in:

  18. Search for M. Zannoni in:

  19. Search for H. Cao in:

  20. Search for R. Helled in:

  21. Search for J. I. Lunine in:

  22. Search for Y. Miguel in:

  23. Search for B. Militzer in:

  24. Search for S. Wahl in:

  25. Search for J. E. P. Connerney in:

  26. Search for S. M. Levin in:

  27. Search for S. J. Bolton in:


L.I. and W.M.F. led the experiment and supervised the data analysis. L.I. wrote most of the manuscript. D.D. and M.P. carried out the gravity data analysis. Y.K. and E.G. provided models of the asymmetric and tesseral gravity field. Y.K., E.G., T.G., W.B.H. and D.J.S. carried out consistency checks with interior models and provided theoretical support. D.R.B. planned and supervised the data collection. P.R. designed and coded the orbit determination filter used in this analysis. L.G.C., P.T. and M.Z. provided the media calibrations. J.D.A., A.M., R.P. and D.S. advised on the data analysis. H.C., R.H., J.I.L., Y.M., B.M. and S.W. helped in the definition of the scientific objectives of the measurements. J.E.P.C., S.M.L. and S.J.B. supervised the planning and execution of the gravity experiment.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to L. Iess.

Reviewer Information Nature thanks J. Fortney and N. Nettelmann for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.