Letter

An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5

  • Nature volume 553, pages 473476 (25 January 2018)
  • doi:10.1038/nature25180
  • Download Citation
Received:
Accepted:
Published:

Abstract

Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade1. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old—just five per cent of its current age—reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses2,3 or episodic hyper-Eddington accretion4,5. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011)

  2. 2.

    , , & Black hole formation in the early Universe. Mon. Not. R. Astron. Soc. 433, 1607–1618 (2013)

  3. 3.

    & Rapid growth of seed black holes in the early Universe by supra-exponential accretion. Science 345, 1330–1333 (2014)

  4. 4.

    , & The growth efficiency of high-redshift black holes. Mon. Not. R. Astron. Soc. 452, 1922–1933 (2015)

  5. 5.

    , & Hyper-Eddington accretion flows on to massive black holes. Mon. Not. R. Astron. Soc. 459, 3738–3755 (2016)

  6. 6.

    et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010)

  7. 7.

    et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007)

  8. 8.

    et al. The Pan-STARRS1 distant z > 5.6 quasar survey: more than 100 quasars within the first Gyr of the Universe. Astrophys. J. Suppl. Ser. 227, 11 (2016)

  9. 9.

    et al. Copious amounts of dust and gas in a z = 7.5 quasar host galaxy. Astrophys. J. 851, L8 (2017)

  10. 10.

    et al. Bright [C ɪɪ] and dust emission in three z > 6.6 quasar host galaxies observed by ALMA. Astrophys. J. 816, 37 (2016)

  11. 11.

    Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

  12. 12.

    Planck Collaboration. Planck intermediate results. XLVII. Planck constraints on reionization history. Astron. Astrophys. 596, A108 (2016)

  13. 13.

    & Mass functions of the active black holes in distant quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the color-selected sample of the SDSS Fall Equatorial Stripe. Astrophys. J. 699, 800–816 (2009)

  14. 14.

    , , , & The effect of nuclear gas distribution on the mass determination of supermassive black holes. Nat. Astron. (2017)

  15. 15.

    et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006)

  16. 16.

    et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015)

  17. 17.

    et al. Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six. Mon. Not. R. Astron. Soc. 447, 3402–3419 (2015)

  18. 18.

    Reionization of the intergalactic medium and the damping wing of the Gunn–Peterson trough. Astrophys. J. 501, 15–22 (1998)

  19. 19.

    , , & Are we witnessing the epoch of reionization at z = 7.1 from the spectrum of J1120 + 0641? Mon. Not. R. Astron. Soc. 4239–4249 (2016)

  20. 20.

    & Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120 + 0641. Mon. Not. R. Astron. Soc. 452, 1105–1111 (2015)

  21. 21.

    et al. Extremely metal-poor gas at a redshift of 7. Nature 492, 79–82 (2012)

  22. 22.

    & The evolution of Lyman limit absorption systems to redshift six. Astrophys. J. 721, 1448–1466 (2010)

  23. 23.

    et al. First results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) survey: cosmological reionization at z ~ 7. Astrophys. J. 842, L22 (2017)

  24. 24.

    , , & Physical properties of the first quasars. Publ. Astron. Soc. Aust. 34, e022 (2017)

  25. 25.

    et al. The Sloan Digital Sky Survey quasar catalog: twelfth data release. Astron. Astrophys. 597, A79 (2017)

  26. 26.

    et al. Constraining the evolution of the ionizing background and the epoch of reionization with z ~ 6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117–136 (2006)

  27. 27.

    et al. Implications of z ~ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. Astrophys. J. 840, 24 (2017)

  28. 28.

    , , , & Predicting QSO continua in the Lyα forest. Astrophys. J. 618, 592–600 (2005)

  29. 29.

    et al. A principal component analysis of quasar UV spectra at z ~ 3. Astron. Astrophys. 530, A50 (2011)

  30. 30.

    & Quasar H ɪɪ regions during cosmic reionization. Mon. Not. R. Astron. Soc. 380, L30–L34 (2007)

  31. 31.

    , & Quasar ionization from Lyα emission in an inhomogeneous intergalactic medium. Mon. Not. R. Astron. Soc. 457, 3006–3023 (2016)

  32. 32.

    et al. The Lyman α forest in optically thin hydrodynamical simulations. Mon. Not. R. Astron. Soc. 446, 3697–3724 (2015)

  33. 33.

    , & 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955–972 (2011)

  34. 34.

    , & Bayesian indirect inference using a parametric auxiliary model. Stat. Sci. 30, 72–95 (2015)

  35. 35.

    et al. How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120 + 0641? Mon. Not. R. Astron. Soc. 416, L70–L74 (2011)

  36. 36.

    , , & emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013)

  37. 37.

    , , & The rest-frame extreme-ultraviolet spectral properties of quasi-stellar objects. Astrophys. J. 565, 773–785 (2002)

Download references

Acknowledgements

We thank D. Ossip for support with the FIRE echellette observations and A. Stephens for help preparing the GNIRS observations. This work is based on data collected with the Magellan Baade telescope, the Gemini North telescope (programme GN-2017A-DD-4), the Large Binocular Telescope and the IRAM/NOEMA interferometer. We are grateful for the support provided by the staff of these observatories. We acknowledge the use of the UKIDSS, WISE and DECaLS surveys.

Author information

Affiliations

  1. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, California 91101, USA

    • Eduardo Bañados
    • , Daniel D. Kelson
    •  & Gwen C. Rudie
  2. Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

    • Bram P. Venemans
    • , Chiara Mazzucchelli
    • , Emanuele P. Farina
    • , Fabian Walter
    • , Roberto Decarli
    •  & Hans-Walter Rix
  3. Department of Astronomy, School of Physics, Peking University, Beijing 100871, China

    • Feige Wang
    •  & Jinyi Yang
  4. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China

    • Feige Wang
    •  & Jinyi Yang
  5. INAF—Osservatorio Astronomico di Bologna, via Gobetti 93/3, 40129 Bologna, Italy

    • Roberto Decarli
  6. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA

    • Daniel Stern
  7. Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721-0065, USA

    • Xiaohui Fan
  8. Department of Physics, Broida Hall, University of California, Santa Barbara, California 93106-9530, USA

    • Frederick B. Davies
    •  & Joseph F. Hennawi
  9. MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

    • Robert A. Simcoe
    •  & Monica L. Turner
  10. Las Cumbres Observatory, 6740 Cortona Drive, Goleta, California 93117, USA

    • Monica L. Turner
  11. Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, 38406 Saint Martin d’Hères, France

    • Jan Martin Winters

Authors

  1. Search for Eduardo Bañados in:

  2. Search for Bram P. Venemans in:

  3. Search for Chiara Mazzucchelli in:

  4. Search for Emanuele P. Farina in:

  5. Search for Fabian Walter in:

  6. Search for Feige Wang in:

  7. Search for Roberto Decarli in:

  8. Search for Daniel Stern in:

  9. Search for Xiaohui Fan in:

  10. Search for Frederick B. Davies in:

  11. Search for Joseph F. Hennawi in:

  12. Search for Robert A. Simcoe in:

  13. Search for Monica L. Turner in:

  14. Search for Hans-Walter Rix in:

  15. Search for Jinyi Yang in:

  16. Search for Daniel D. Kelson in:

  17. Search for Gwen C. Rudie in:

  18. Search for Jan Martin Winters in:

Contributions

E.B., R.D., X.F., E.P.F., C.M., H.-W.R., D.S., B.P.V., F. Walter, F. Wang and J.Y. discussed and planned the candidate selection and observing strategy, and analysed the data. E.B. selected the quasar and with D.S. obtained and analysed the discovery spectrum. R.A.S. provided the final FIRE data reduction. J.F.H. provided the final GNIRS data reduction. G.C.R. carried out the follow-up Fourstar observations for this quasar. D.D.K. reduced the follow-up Fourstar data. J.M.W., B.P.V. and F. Walter contributed to the observations and analysis of the IRAM/NOEMA data. The damping-wing analyses were carried out by E.B. (model A), F.B.D. and J.F.H. (model B), and R.A.S. and M.L.T. (model C). F.B.D. and J.F.H. performed the PCA continuum modelling. R.A.S. performed the analysis to find the characteristics of a single absorber that could cause the absorption profile of the quasar. E.B. led the team and prepared the manuscript. All co-authors discussed the results and provided input to the paper and data analysis.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Eduardo Bañados.

Reviewer Information Nature thanks D. Mortlock and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.