The Great Pyramid, or Khufu’s Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops)1, who reigned from 2509 bc to 2483 bc. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built2,3. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone4,5,6. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century1. The void, named ScanPyramids’ Big Void, was first observed with nuclear emulsion films7,8,9 installed in the Queen’s chamber, then confirmed with scintillator hodoscopes10,11 set up in the same chamber and finally re-confirmed with gas detectors12 outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu’s Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world’s archaeological heritage.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    The Complete Pyramids: Solving the Ancient Mysteries (Thames and Hudson, 2008)

  2. 2.

    Pyramid construction: new evidence discovered in Giza. In Stationen. Beiträge zur Kulturgeschichte Ägyptens Rainer Stadelmann gewidmet (eds & ) 53–62 (Philipp von Zabern, 1998)

  3. 3.

    ., & How the Great Pyramid was Built (Harper Collins, 2006)

  4. 4.

    Particle Data Group. Review of particle physics. Chin. Phys. C40, 100001 (2016)

  5. 5.

    et al. Search for hidden chambers in the pyramids. Science 167, 832–839 (1970)

  6. 6.

    , , , & Development of an emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of a volcano, Mt. Asama. Nucl. Instrum. Methods A 575, 489–497 (2007)

  7. 7.

    , , , & , Development of nuclear emulsion for muography. Ann. Geophys. 60, 0112 (2017)

  8. 8.

    et al. The OPERA film: new nuclear emulsion for large-scale, high-precision experiments. Nucl. Instrum. Methods A 556, 80–86 (2006)

  9. 9.

    , , & Development of nuclear emulsion detector for muon radiography. Phys. Proc. 80, 74–77 (2015)

  10. 10.

    et al. Detection of on-surface objects with an underground radiography detector system using cosmic-ray muons. Progr. Theor. Exp. Phys. 5, 053C01 (2017)

  11. 11.

    et al. Performance of a remotely located muon radiography system to identify the inner structure of a nuclear plant. Progr. Theor. Exp. Phys. 7, 073C01 (2013)

  12. 12.

    et al. A Micromegas-based telescope for muon tomography: the WatTo experiment. Nucl. Instrum. Methods A 834, 223–228 (2016)

  13. 13.

    The Great Pyramid’s footprint: results from our 2015 survey. Aeragram 16, 8–14 (2015)

  14. 14.

    et al. First report: video survey of the southern shaft of the Queen’s chamber in the Great Pyramid. Ann. Serv. Antiq. Egypte 84, 203–216 (2010)

  15. 15.

    et al. The “Djedi” robot exploration of the southern shaft of the Queen’s Chamber in the Great Pyramid of Giza, Egypt. J. Field Robot. 30, 323–348 (2013)

  16. 16.

    Les Papyrus de la Mer Rouge 1 : Le “Journal de Merer” (Institut Français d’Archéologie Orientale, 2017)

  17. 17.

    Imaging the Cheops Pyramid (Springer Science & Business Media, 2011)

  18. 18.

    Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49, 1084–1096 (1984)

  19. 19.

    ., ., & Non-destructive pyramid investigation. Parts 1 and 2. Stud. Egypt. Cult. 6 & 8, and (1987)

  20. 20.

    . et al. First demonstration of cosmic ray muon radiography of reactor cores with nuclear emulsion based on an automated high-speed scanning technology. Proc. 26th Worksh. on ‘Radiation Detectors and Their Uses’ 27–36, (2012)

  21. 21.

    et al. Surveillance: radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003)

  22. 22.

    et al. A scintillating fibres tracker detector for archaeological applications. Nucl. Instrum. Methods A 572, 262–265 (2007)

  23. 23.

    et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples). Sci. Rep. 7, 1181 (2017)

  24. 24.

    Searching for cavities in the Teotihuacan Pyramid of the Sun using cosmic muons experiments and instrumentation. Int. Cosmic Ray Conf. 4, 325 (2011)

  25. 25.

    , , & Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters. Progr. Theor. Exp. Phys. 10, 103H01 (2017)

  26. 26.

    , , , & Development of an automated nuclear emulsion analyzing system. Radiat. Meas. 50, 237–240 (2013)

  27. 27.

    et al. Comprehensive track reconstruction tool “NETSCAN 2.0” for the analysis of the OPERA Emulsion Cloud Chamber. J. Instrum. 7, P07001 (2012)

  28. 28.

    et al. geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)

  29. 29.

    Latest developments in nuclear emulsion technology. Phys. Proc. 80, 19–24 (2015)

  30. 30.

    . et al. Long term property of nuclear emulsion. Progr. Proc. 1st Int. Conf. on ‘Advanced Imaging’ (ICAI2015) 668–671 (Imaging Society of Japan, 2015)

  31. 31.

    et al. The fully automated emulsion analysis system. Nucl. Instrum. Methods B 51, 466–472 (1990)

  32. 32.

    & Development of a new automatic nuclear emulsion scanning system, S-UTS, with continuous 3D tomographic image read-out. J. Instrum. 5, P04011 (2010)

  33. 33.

    Rapporteur paper on muons and neutrinos. 13th Int. ‘Cosmic Ray’ Conf. Vol. 5, 3638–3655 (1973)

  34. 34.

    La Chambre de Cheops: Analyse Architecturale (Fayard, 2004)

  35. 35.

    A simple parameterization of the cosmic-ray muon momentum spectra at the surface as a function of zenith angle. Preprint at (2006)

  36. 36.

    , , , & Cosmic-ray muon spectrum up to 1 TeV at 75 zenith angle. Phys. Rev. D 19, 1368 (1979)

  37. 37.

    , , & MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments. Nucl. Instrum. Methods A 376, 29–35 (1996)

  38. 38.

    et al. Micromegas in a bulk. Nucl. Instrum. Methods A 560, 405–408 (2006)

  39. 39.

    et al. A spark-resistant bulk-micromegas chamber for high-rate applications. Nucl. Instrum. Methods A 640, 110–118 (2011)

  40. 40.

    ., & Genetic multiplexing and first results with a 50 × 50 cm2 Micromegas. Nucl. Instrum. Methods A 729, 888–894 (2013)

  41. 41.

    . et al. Dream: a 64-channel front-end chip with analogue trigger latency buffer for the Micromégas tracker of the CLAS12 experiment. Proc. TWEPP Conf. (2014)

  42. 42.

    & ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods A 389, 81–86 (1997)

  43. 43.

    & L’Architettura delle Piramidi Menfite. Parte IV, La Grande Piramide di Cheope (Rapallo, 1965)

  44. 44.

    Photogrammetry: Geometry from Images and Laser Scans (Walter de Gruyter, 2007)

Download references


This experiment is part of the ScanPyramids project, which is supported by NHK, La Fondation Dassault Systèmes, Suez, IceWatch, le Groupe Dassault, Batscop, Itekube, Parrot, ILP, Kurtzdev, Gen-G and Schneider Electric. Measurement with nuclear emulsions was supported by the JST-SENTAN Program from the Japan Science and Technology Agency and JSPS KAKENHI (grant JP15H04241). The CEA telescopes were funded partly by the Région Ile-de-France and the P2IO LabEx (grant ANR-10-LABX-0038) in the framework ‘Investissements d’Avenir’ (grant ANR-11-IDEX-0003-01) managed by the Agence Nationale de la Recherche (France). The detectors were built by the ELVIA company and the CERN Micro-Pattern Gaseous Detector workshop. We thank the members and benefactors of the ScanPyramids project, and in particular: T. Hisaizumi, the members of Cairo University, the members of the F-laboratory in Nagoya University, Y. Doki, the Aïn El Shams University 3D scanning team, the members of the Egyptian Ministry of Antiquities, K. El Enany, M. El Damaty, T. Tawfik, S. Mourad, S. Tageldin, E. Badawy, M. Moussa, T. Yabuki, D. Takama, T. Shibasaki, K. Tsutsumida, K. Mikami, J. Nakao, H. Kurihara, S. Wada, H. Anwar, T. de Tersant, P. Forestier, L. Barthès, M.-P. Aulas, P. Daloz, S. Moignet, V. Raoult-Desprez, S. Sellam, P. Johnson, J.-M. Boursier, T. Alexandre, V. Ferret, T. Collet, H. Andorre, C. Oger-Chevalier, V. Picou, B. Duplat, K. Guilbert, J. Ulrich, D. Ulrich, C. Thouvenin, L. Jamet, A. Kiner, M.-H. Habert, B. Habert, L. Gaudé, F. Schuiten, F. Barati, P. Bourseiller, R. Theet, J.-P. Lutgen, R. Chok, N. Duteil, F. Tran, J.-P. Houdin, L. Kaltenbach, M. Léveillé-Nizerolle, R. Breitner, R. Fontaine, H. Pomeranc, F. Ruffier, G. Bourge, R. Pantanacce, M. Jany, L. Walker, L. Chapus, E. Galal, H. A. Mohalhal, S. M. Elhindawi, J. Lefaucheux, J.-M. Conan, E. M. Elwilly, A. Y. Saad, H. Barrada, E. Priou, S.Parrault, J.-C. Barré, X. Maldague, C. Ibarra Castenado, M. Klein, F. Khodayar, G. Amsellem, M. Sassen, C. Béhar, M. Ezzeldin, E. Van Laere, D. Leglu, B. Biard, N. Godin, P. der Manuelian, L. Gabriel, P. Attar, A. De Sousa, F. Morfoisse, R. Cotentin, C. Delache and G. Perrin.

Author information


  1. F-lab, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

    • Kunihiro Morishima
    • , Mitsuaki Kuno
    • , Akira Nishio
    • , Nobuko Kitagawa
    • , Yuta Manabe
    •  & Masaki Moto
  2. High Energy Accelerator Research Organization (KEK), 1-1 oho, Tsukuba, Ibaraki 305-0801, Japan

    • Fumihiko Takasaki
    • , Hirofumi Fujii
    • , Kotaro Satoh
    • , Hideyo Kodama
    • , Kohei Hayashi
    •  & Shigeru Odaka
  3. Institut de Recherche sur les lois Fondamentales de l’Univers (IRFU), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, 91191 Gif-sur-Yvette, France

    • Sébastien Procureur
    • , David Attié
    • , Simon Bouteille
    • , Denis Calvet
    • , Christopher Filosa
    • , Patrick Magnier
    • , Irakli Mandjavidze
    •  & Marc Riallot
  4. HIP Institute, 50 rue de Rome, 75008 Paris, France

    • Benoit Marini
    • , Vincent Steiger
    • , Nicolas Serikoff
    • , Hany Helal
    •  & Mehdi Tayoubi
  5. Emissive, 71 rue de Provence, 75009 Paris, France.

    • Pierre Gable
    •  & Emmanuel Guerriero
  6. NHK Enterprises, Inc. (NEP), 4-14 Kamiyama-cho, Shibuya-ku, Tokyo 150-0047, Japan

    • Yoshikatsu Date
  7. Suave Images, N-2 Maison de Shino, 3-30-8 Kamineguro, Meguro-Ku, Tokyo 153-0051, Japan

    • Makiko Sugiura
  8. Cairo University, 9 Al Gameya, Oula, Giza Governorate, Egypt

    • Yasser Elshayeb
    • , Mustapha Ezzy
    •  & Hany Helal
  9. Ain Shams University, Kasr el-Zaafaran, Abbasiya, Cairo, Egypt

    • Tamer Elnady
  10. Inria, Villers-lès-Nancy F-54600, France

    • Jean-Baptiste Mouret
  11. CNRS, Vandœuvre-lès-Nancy F-54500, France

    • Jean-Baptiste Mouret
  12. Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France

    • Jean-Baptiste Mouret
  13. Dassault Systèmes, 10 Rue Marcel Dassault, 78140 Vélizy-Villacoublay, France

    • Bernard Charlès
    •  & Mehdi Tayoubi


  1. Search for Kunihiro Morishima in:

  2. Search for Mitsuaki Kuno in:

  3. Search for Akira Nishio in:

  4. Search for Nobuko Kitagawa in:

  5. Search for Yuta Manabe in:

  6. Search for Masaki Moto in:

  7. Search for Fumihiko Takasaki in:

  8. Search for Hirofumi Fujii in:

  9. Search for Kotaro Satoh in:

  10. Search for Hideyo Kodama in:

  11. Search for Kohei Hayashi in:

  12. Search for Shigeru Odaka in:

  13. Search for Sébastien Procureur in:

  14. Search for David Attié in:

  15. Search for Simon Bouteille in:

  16. Search for Denis Calvet in:

  17. Search for Christopher Filosa in:

  18. Search for Patrick Magnier in:

  19. Search for Irakli Mandjavidze in:

  20. Search for Marc Riallot in:

  21. Search for Benoit Marini in:

  22. Search for Pierre Gable in:

  23. Search for Yoshikatsu Date in:

  24. Search for Makiko Sugiura in:

  25. Search for Yasser Elshayeb in:

  26. Search for Tamer Elnady in:

  27. Search for Mustapha Ezzy in:

  28. Search for Emmanuel Guerriero in:

  29. Search for Vincent Steiger in:

  30. Search for Nicolas Serikoff in:

  31. Search for Jean-Baptiste Mouret in:

  32. Search for Bernard Charlès in:

  33. Search for Hany Helal in:

  34. Search for Mehdi Tayoubi in:


K.M., M.K., A.N., N.K., Y.M. and M.M. performed the experiments and analysed the results for the nuclear emulsion films; F.T., H.F., K.S., H.K., K.H. and S.O. performed the experiments and analysed the results for the scintillator hodoscopes. S.P., D.A., S.B., D.C., C.F., P.M., I.M. and M.R. performed the experiment and analysed the results from the gas detector telescopes. B.M., P.G., E.G., N.S., Y.D. and M.S. created the 3D models used for the muography simulations and the RTMS. B.M. designed and implemented the RTMS and contributed to the analyses. Y.E., T.E., M.E. and V.S. coordinated the different experimental operations in the field (muography, 3D scans).The paper was mainly written by K.M., S.P., F.T., M.T., B.M. and J.-B.M., with contributions from all the other authors. H.H., M.T., B.C., B.M. and Y.E. designed and coordinated the project (ScanPyramids).

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Kunihiro Morishima or Mehdi Tayoubi.

Reviewer Information Nature thanks G. Saracino, L. Thompson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.