Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus

  • Nature volume 544, pages 357361 (20 April 2017)
  • doi:10.1038/nature21674
  • Download Citation


Recent genomic data have revealed multiple interactions between Neanderthals and modern humans1, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering2,3. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess4 and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)—the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010)

  2. 2.

    et al. Molar macrowear reveals Neanderthal eco-geographic dietary variation. PLoS One 6, e14769 (2011)

  3. 3.

    , , & Neandertal versus modern human dietary responses to climatic fluctuations. PLoS One 11, e0153277 (2016)

  4. 4.

    et al. Paleobiology and comparative morphology of a late Neandertal sample from El Sidron, Asturias, Spain. Proc. Natl Acad. Sci. USA 103, 19266–19271 (2006)

  5. 5.

    et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014)

  6. 6.

    & Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl Acad. Sci. USA 106, 16034–16039 (2009)

  7. 7.

    , , , & Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J. Hum. Evol. 49, 71–87 (2005)

  8. 8.

    et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012)

  9. 9.

    et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015)

  10. 10.

    , & Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015)

  11. 11.

    et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 45, 450–455, e1 (2013)

  12. 12.

    et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014)

  13. 13.

    et al. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci. Rep. 5, 16498 (2015)

  14. 14.

    et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008)

  15. 15.

    et al. MALT: fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. Preprint at (2016)

  16. 16.

    , & The fossil mammals of Spy. Anthropologica et Præhistorica 123/2012, 298–327 (2013)

  17. 17.

    Nouvelles données paléogéographiques et chronologiques sur les Caprinae (Mammalia, Bovidae) du Pléistocène moyen et supérieur d’Europe. Euskomedia 57, 205–219 (2005)

  18. 18.

    Neanderthal subsistence behaviours in Europe. Int. J. Osteoarchaeol. 10, 379–395 (2000)

  19. 19.

    et al. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen. J. Hum. Evol. 93, 82–90 (2016)

  20. 20.

    , & The missing mushrooms: searching for fungi in ancient human dietary analysis. J. Archaeol. Sci. 75, 139–143 (2016)

  21. 21.

    et al. Enterocytozoon bieneusi among children with diarrhea attending Mulago Hospital in Uganda. Am. J. Trop. Med. Hyg. 67, 299–303 (2002)

  22. 22.

    & The Human Biology of Pastoral Populations (Cambridge Univ. Press, 2002)

  23. 23.

    et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011)

  24. 24.

    & Dental plaque as a biofilm. J. Ind. Microbiol. 15, 169–175 (1995)

  25. 25.

    , , & Role of Fusobacterium nucleatum in periodontal health and disease. Curr. Issues Mol. Biol. 13, 25–36 (2011)

  26. 26.

    & The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012)

  27. 27.

    , & Periodontal disease and dental caries from Krapina Neanderthal to contemporary man—skeletal studies. Acta Med. Acad. 41, 119–130 (2012)

  28. 28.

    et al. A new date for the Neanderthals from El Sidrón Cave (Asturias, Northern Spain)*. Archaeometry 55, 148–158 (2013)

  29. 29.

    The origin and evolution of Homo sapiens. Phil. Trans. R. Soc. B 371, 20150237 (2016)

  30. 30.

    , , , & The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)

  31. 31.

    et al. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat. Commun. 4, 1764 (2013)

  32. 32.

    et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012)

  33. 33.

    & Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010)

  34. 34.

    ea-utils: command-line tools for processing biological sequencing data. (Expression Analysis, Durham, 2011)

  35. 35.

    et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)

  36. 36.

    et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006)

  37. 37.

    AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012)

  38. 38.

    et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011)

  39. 39.

    et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008)

  40. 40.

    , & Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015)

  41. 41.

    , , , & Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552–1560 (2011)

  42. 42.

    , & Abundant human DNA contamination identified in non-primate genome databases. PLoS One 6, e16410 (2011)

  43. 43.

    et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012)

  44. 44.

    , , , & mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011)

  45. 45.

    , & progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5, e11147 (2010)

  46. 46.

    RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

Download references


We thank G. Manzi, the Odontological Collection of the Royal College of Surgeons, Royal Belgian Institute of Natural Sciences, Museo Nacional de Ciencias Naturales, and Adelaide University for access to dental calculus material. We thank A. Croxford for DNA sequencing and A. Walker, J. Krause and A. Herbig for feedback. The Australian Research Council supported this work through the Discovery Project and Fellowship schemes. We acknowledge the fundamental contribution of D. Brothwell (1933-2016) to this research by initiating the archaeological study of dental calculus.

Author information


  1. Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, University of Adelaide, Adelaide, South Australia, Australia

    • Laura S. Weyrich
    • , Julien Soubrier
    • , Luis Arriola
    • , Bastien Llamas
    • , James Breen
    • , Andrew G. Farrer
    • , Wolfgang Haak
    •  & Alan Cooper
  2. Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, Australia

    • Sebastian Duchene
    •  & Edward C. Holmes
  3. Department of Human Biology, University of Cape Town, Cape Town, South Africa

    • Alan G. Morris
  4. Danube Private University, Krems, Austria

    • Kurt W. Alt
  5. State Office for Heritage Management and Archaeology, Saxony-Anhalt, Germany

    • Kurt W. Alt
    •  & Veit Dresely
  6. Heritage Museum, Halle, Germany

    • Kurt W. Alt
    •  & Veit Dresely
  7. Institute for Prehistory and Archaeological Science, Basel University, Switzerland

    • Kurt W. Alt
  8. Department of Biology, University of Florence, Florence, Italy

    • David Caramelli
  9. Human Origins and Palaeo Environments Group, Oxford Brookes University, Oxford, UK

    • Milly Farrell
  10. Paleoanthropology, Senckenberg Centre for Human Evolution and Paleoenvironments, Eberhard Karls University of Tübingen, Tübingen, Germany

    • Michael Francken
    •  & Katerina Harvati
  11. School of Dentistry, The University of Adelaide, Adelaide, Australia

    • Neville Gully
    • , John Kaidonis
    •  & Grant Townsend
  12. Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys 23, 08010 Barcelona, Catalonia, Spain

    • Karen Hardy
  13. Departament de Prehistòria, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain

    • Karen Hardy
  14. Institute of Anthropology, University of Mainz, Mainz, Germany

    • Petra Held
  15. Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain

    • Carles Lalueza-Fox
  16. Área de Prehistoria, Departamento de Historia, Universidad de Oviedo, Oviedo, Spain

    • Marco de la Rasilla
  17. Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain

    • Antonio Rosas
  18. Scientific Service Heritage, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

    • Patrick Semal
  19. Department of Bioarchaeology, Institute of Archaeology, University of Warsaw, Warsaw, Poland

    • Arkadiusz Soltysiak
  20. Istituto Italiano per l’Africa e l’Oriente (IsIAO), Rome, Italy

    • Donatella Usai
  21. State Office for Cultural Heritage Management Baden-Württemberg, Esslingen, Germany

    • Joachim Wahl
  22. Department of Algorithms in Bioinformatics, University of Tübingen, Tübingen, Germany

    • Daniel H. Huson
  23. Department of Archaeology, Classics and Egyptology, School of Histories, Languages and Cultures, University of Liverpool, Liverpool, UK

    • Keith Dobney
  24. Department of Archaeology, University of Aberdeen, Aberdeen, UK

    • Keith Dobney
  25. Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada

    • Keith Dobney


  1. Search for Laura S. Weyrich in:

  2. Search for Sebastian Duchene in:

  3. Search for Julien Soubrier in:

  4. Search for Luis Arriola in:

  5. Search for Bastien Llamas in:

  6. Search for James Breen in:

  7. Search for Alan G. Morris in:

  8. Search for Kurt W. Alt in:

  9. Search for David Caramelli in:

  10. Search for Veit Dresely in:

  11. Search for Milly Farrell in:

  12. Search for Andrew G. Farrer in:

  13. Search for Michael Francken in:

  14. Search for Neville Gully in:

  15. Search for Wolfgang Haak in:

  16. Search for Karen Hardy in:

  17. Search for Katerina Harvati in:

  18. Search for Petra Held in:

  19. Search for Edward C. Holmes in:

  20. Search for John Kaidonis in:

  21. Search for Carles Lalueza-Fox in:

  22. Search for Marco de la Rasilla in:

  23. Search for Antonio Rosas in:

  24. Search for Patrick Semal in:

  25. Search for Arkadiusz Soltysiak in:

  26. Search for Grant Townsend in:

  27. Search for Donatella Usai in:

  28. Search for Joachim Wahl in:

  29. Search for Daniel H. Huson in:

  30. Search for Keith Dobney in:

  31. Search for Alan Cooper in:


L.S.W., K.D. and A.C. designed the study; A.G.M., K.W.A., D.C., V.D., M.Fa., M.Fr., N.G., W.H., K.Hard., K.Harv., P.H., J.K., C.L.F., M.d.l.R., A.R., P.S., A.S., D.U. and J.W. provided samples and interpretations of associated archaeological goods; L.S.W. performed experiments; L.S.W., S.D., E.C.H., J.S., B.L., J.B., L.A., A.G.F. and A.C. performed bioinformatics analysis and interpretation of the data; D.H.H. developed bioinformatics tools; N.G., J.K., and G.T. analysed medical relevance of data; L.S.W. and A.C. wrote the paper; and all authors contributed to editing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Laura S. Weyrich or Alan Cooper.

Reviewer Information Nature thanks P. Ungar and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.