Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

Abstract

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate1. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain1. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation2. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels2,3, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Side and forward views of DC-8 contrails and the operational cruise curve.
Figure 2: Summary of particle emissions indices at all thrust and cruise conditions.
Figure 3: Size distributions of particle emissions at high-thrust and cruise conditions.

Similar content being viewed by others

References

  1. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 7 (Cambridge Univ. Press, 2013)

    Google Scholar 

  2. Kärcher, B., Burkhardt, U., Bier, A., Bock, L. & Ford, I. J. The microphysical pathway to contrail formation. J. Geophys. Res. Atmospheres 120, 7893–7927 (2015)

    Article  ADS  Google Scholar 

  3. Kärcher, B. The importance of contrail ice formation for mitigating the climate impact of aviation. J. Geophys. Res. Atmospheres 121, 3497–3505 (2016)

    Article  ADS  Google Scholar 

  4. Burkhardt, U. & Kärcher, B. Global radiative forcing from contrail cirrus. Nat. Clim. Chang. 1, 54–58 (2011)

    Article  ADS  Google Scholar 

  5. Lee, D. S. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Brasseur, G. P. et al. Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II. Bull. Am. Meteorol. Soc. 97, 561–583 (2016)

    Article  ADS  Google Scholar 

  7. Gettelman, A. & Chen, C. The climate impact of aviation aerosols. Geophys. Res. Lett. 40, 2785–2789 (2013)

    Article  ADS  CAS  Google Scholar 

  8. Tesche, M., Achtert, P., Glantz, P. & Noone, K. J. Aviation effects on already-existing cirrus clouds. Nat. Commun. 7, 12016 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ringbeck, J. V. K. Aviation biofuels: a roadmap towards more carbon-neutral skies. Biofuels 1, 519–521 (2010)

    Article  CAS  Google Scholar 

  10. Rye, L., Blakey, S. & Wilson, C. Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels. Energy Environ. Sci. 3, 17–27 (2010)

    CAS  Google Scholar 

  11. Warshay, B., Pan, J. & Sgouridis, S. Aviation industry’s quest for a sustainable fuel: considerations of scale and modal opportunity carbon benefit. Biofuels 2, 33–58 (2011)

    Article  CAS  Google Scholar 

  12. Law, C. K. Fuel options for next-generation chemical propulsion. AIAA J. 50, 19–36 (2012)

    Article  ADS  CAS  Google Scholar 

  13. Savage, N. Fuel options: the ideal biofuel. Nature 474, S9–S11 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Corporan, E. et al. Emissions characteristics of a turbine engine and research combustor burning a Fischer–Tropsch jet fuel. Energy Fuels 21, 2615–2626 (2007)

    Article  CAS  Google Scholar 

  15. Lobo, P., Hagen, D. E. & Whitefield, P. D. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer–Tropsch fuels. Environ. Sci. Technol. 45, 10744–10749 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Moore, R. H. et al. Influence of jet fuel composition on aircraft engine emissions: a synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS missions. Energy Fuels 29, 2591–2600 (2015)

    Article  CAS  Google Scholar 

  17. Schumann, U. et al. In situ observations of particles in jet aircraft exhaust and contrails for different sulfur-containing fuels. J. Geophys. Res. Atmospheres 101, 6853–6869 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Anderson, B. E. et al. Airborne observations of aircraft aerosol emissions I: total nonvolatile particle emission indices. Geophys. Res. Lett. 25, 1689–1692 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Schröder, F. P. et al. Ultrafine aerosol particles in aircraft plumes: in situ observations. Geophys. Res. Lett. 25, 2789–2792 (1998)

    Article  ADS  Google Scholar 

  20. Toon, O. B. & Miake-Lye, R. C. Subsonic aircraft: contrail and cloud effects special study (SUCCESS). Geophys. Res. Lett. 25, 1109–1112 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Petzold, A., Döpelheuer, A., Brock, C. & Schröder, F. In situ observations and model calculations of black carbon emission by aircraft at cruise altitude. J. Geophys. Res. Atmospheres 104, 22171–22181 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Schumann, U. et al. Influence of fuel sulfur on the composition of aircraft exhaust plumes: the experiments SULFUR 1–7. J. Geophys. Res. Atmospheres 107, ACC 2-1–ACC 2-27 (2002)

    Article  Google Scholar 

  23. Brock, C. A. et al. Ultrafine particle size distributions measured in aircraft exhaust plumes. J. Geophys. Res. Atmospheres 105, 26555–26567 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Petzold, A. & Döpelheuer, A. Observations of black carbon mass emission indices of a jet engine. Aerosol Sci. Technol. 29, 355–356 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Peck, J., Oluwole, O. O., Wong, H.-W. & Miake-Lye, R. C. An algorithm to estimate aircraft cruise black carbon emissions for use in developing a cruise emissions inventory. J. Air Waste Manag. Assoc. 63, 367–375 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. Stettler, M. E. J., Boies, A. M., Petzold, A. & Barrett, S. R. H. Global civil aviation black carbon emissions. Environ. Sci. Technol. 47, 10397–10404 (2013)

    CAS  Google Scholar 

  27. Unterstrasser, S. Properties of young contrails – a parametrisation based on large-eddy simulations. Atmos. Chem. Phys. 16, 2059–2082 (2016)

    Article  ADS  CAS  Google Scholar 

  28. Schumann, U., Jeßberger, P. & Voigt, C. Contrail ice particles in aircraft wakes and their climatic importance. Geophys. Res. Lett. 40, 2867–2872 (2013)

    Article  ADS  CAS  Google Scholar 

  29. Jeßberger, P. et al. Aircraft type influence on contrail properties. Atmos. Chem. Phys. 13, 11965–11984 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Lewellen, D. C. Persistent contrails and contrail cirrus. Part II: full lifetime behavior. J. Atmos. Sci. 71, 4420–4438 (2014)

    Article  ADS  Google Scholar 

  31. Wey, C. C. et al. Overview on the aircraft particle emissions experiment (APEX). J. Propuls. Power 23, 898–905 (2007)

    Article  CAS  Google Scholar 

  32. Anderson, B. et al. Alternative Aviation Fuel Experiment (AAFEX). Report No. NASA/TM-2011-217059 (NASA, 2011)

    Google Scholar 

  33. Beyersdorf, A. J. et al. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos. Chem. Phys. 14, 11–23 (2014)

    Article  ADS  CAS  Google Scholar 

  34. Onasch, T. B. et al. Chemical properties of aircraft engine particulate exhaust emissions. J. Propuls. Power 25, 1121–1137 (2009)

    Article  CAS  Google Scholar 

  35. The Technology Behind the CFM56-2 Turbofan Enginehttps://web.archive.org/web/20120430172000/http://www.cfm56.com/products/cfm56-2/cfm56-2-technology (accessed 11 May 2016)

  36. European Advanced Biofuels Flight Path Initiativehttp://ec.europa.eu/energy/en/topics/biofuels/biofuels-aviation (accessed 22 July 2016)

  37. Agriculture and Aviation: Partners in Prosperityhttp://www.caafi.org/files/usda-farm-to-fly-report-jan-2012.pdf (US Department of Agriculture, 2012)

  38. Aviation Outlookhttp://www.icao.int/environmental-protection/Documents/EnvironmentReport-2010/ICAO_EnvReport10-Outlook_en.pdf (International Civil Aviation Organization, 2010)

  39. Annual Energy Outlook 2016: Petroleum and Other Liquids Supply and Dispositionhttp://www.eia.gov/forecasts/aeo/data/browser/#/?id=11-AEO2016&region=0-0&cases=ref2016~ref_no_cpp&start=2014&end=2018&f=A&linechart=ref2016-d032416a.3-11-AEO2016~ref_no_cpp-d032316a.3-11-AEO2016&sourcekey=0 (US Energy Information Administration, 2016)

  40. Moses, C. A. & Roets, P. N. Properties, characteristics, and combustion performance of Sasol fully synthetic jet fuel. J. Eng. Gas Turbines Power 131, 041502 (2009)

    Article  CAS  Google Scholar 

  41. Corporan, E. et al. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels 25, 955–966 (2011)

    Article  CAS  Google Scholar 

  42. DeWitt, M. J., Corporan, E., Graham, J. & Minus, D. Effects of aromatic type and concentration in Fischer–Tropsch fuel on emissions production and material compatibility. Energy Fuels 22, 2411–2418 (2008)

    Article  CAS  Google Scholar 

  43. ASTM International. ASTM D1655: Standard Specification for Aviation Turbine Fuelshttp://www.astm.org/Standards/D1655.htm (2016)

  44. ASTM International. ASTM D7566: Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbonshttp://www.astm.org/Standards/D7566.htm (2016)

  45. Voigt, C. et al. In-situ observations of young contrails: overview and selected results from the CONCERT campaign. Atmos. Chem. Phys. 10, 9039–9056 (2010)

    Article  ADS  CAS  Google Scholar 

  46. Moore, R. H. et al. Mapping the operation of the Miniature Combustion Aerosol Standard (Mini-CAST) soot generator. Aerosol Sci. Technol. 48, 467–479 (2014)

    Article  ADS  CAS  Google Scholar 

  47. Bond, T. C. & Bergstrom, R. W. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67 (2006)

    Article  ADS  CAS  Google Scholar 

  48. Virkkula, A. Correction of the calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP). Aerosol Sci. Technol. 44, 706–712 (2010)

    Article  ADS  CAS  Google Scholar 

  49. von der Weiden, S.-L., Drewnick, F. & Borrmann, S. Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems. Atmos. Meas. Tech. 2, 479–494 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the flight crew of the NASA DC-8 and DLR Falcon, W. Ringelberg, D. Fedors, T. Asher, M. Berry, B. Elit, T. Sandon, P. Weber, R. Welser, S. Kaufmann, T. Klausner, A. Reiter, A. Roiger, R. Schlage and U. Schumann for providing meteorological forecasts, and B. Kärcher and P. Le Clercq for discussions. This work was supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, the DLR Aeronautics Research Programme, the Transport Canada Clean Transportation Initiative, and the National Research Council Canada CAAFER Project (46FA-JA12). R.H.M. was supported, in part, by a NASA Postdoctoral Program fellowship. B.W. was supported by the Helmholtz Association (grant number VH-NG-606) and by the European Research Council grant agreement number 640458. C.V. and T.J. were supported by the Helmholtz Association (grant number W2/W3-060) and the German Science Foundation (DFG grant number JU3059/1-1).

Author information

Authors and Affiliations

Authors

Contributions

R.H.M., B.B., G.S., R.Y., A.B., H.S. and B.E.A. designed and carried out the flight experiment; B.B., J.B., R.M., D.R. and R.W. designed and assisted with the payload integration; R.H.M., K.L.T., B.W., D.S., E.D., J.K., M.L., M.S., D.B., T.J., C.V., E.W., L.D.Z., A.B. and B.E.A. made in-flight measurements and analysed the data; R.H.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Richard H. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Mean fuel properties (±1 a.s.d.) for each of the three fuels investigated
Extended Data Table 2 Summary of cruise emissions index tables
Extended Data Table 3 Emissions indices for no. 2 engine under high-thrust and cruise conditions
Extended Data Table 4 Emissions indices for no. 3 engine under high-thrust and cruise conditions
Extended Data Table 5 Emissions indices for no. 2 engine under medium-thrust and cruise conditions
Extended Data Table 6 Emissions indices for no. 2 engine under low-thrust and cruise conditions
Extended Data Table 7 Emissions indices for no. 3 engine under low-thrust and cruise conditions
Extended Data Table 8 Fit coefficients for the number size distribution
Extended Data Table 9 Fit coefficients for the volume size distribution

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, R., Thornhill, K., Weinzierl, B. et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 543, 411–415 (2017). https://doi.org/10.1038/nature21420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21420

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing