Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian prions and their wider relevance in neurodegenerative diseases

Abstract

Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amyloids and prions.
Figure 2: Prion propagation.
Figure 3: Kinetics of prion propagation and toxicity.
Figure 4: Transmission of amyloid-β pathology in humans.

Similar content being viewed by others

References

  1. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001).

    CAS  PubMed  Google Scholar 

  2. Wickner, R. B. et al. Prion diseases of yeast: amyloid structure and biology. Semin. Cell Dev. Biol. 22, 469–475 (2011).

    CAS  Google Scholar 

  3. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bruce, M. E. Scrapie strain variation and mutation. Br. Med. Bull. 49, 822–838 (1993).

    CAS  PubMed  Google Scholar 

  5. Collinge, J. Prion strain mutation and selection. Science 328, 1111–1112 (2010).

    ADS  CAS  PubMed  Google Scholar 

  6. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010). An important study of prions in cell culture showing that biologically 'cloned' populations of prions gradually become heterogeneous by accumulating 'mutants', with selection pressure resulting in the emergence of different mutants in the evolving population.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Sandberg, M. K., Al Doujaily, H., Sharps, B., Clarke, A. R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011). Refs 7 and 19 demonstrate that prion propagation and neurotoxicity occur in two distinct mechanistic phases in vivo ; they also show that neurotoxicity relates to distinct species of PrP that are produced following a pathway switch that occurs when prion levels become saturated.

    ADS  CAS  PubMed  Google Scholar 

  8. Hill, A. F. et al. Species barrier independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA 97, 10248–10253 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Griffith, J. S. Self Replication and scrapie. Nature 215, 1043–1044 (1967).

    ADS  CAS  PubMed  Google Scholar 

  10. Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766 (1967).

    ADS  CAS  PubMed  Google Scholar 

  11. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90 (1995).

    CAS  PubMed  Google Scholar 

  13. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    ADS  CAS  PubMed  Google Scholar 

  14. Meyer, R. K. et al. Separation and properties of cellular and scrapie prion proteins. Proc. Natl Acad. Sci. USA 83, 2310–2314 (1986).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gajdusek, D. C. Transmissible and non-transmissible amyloidoses: autocatalytic post-translational conversion of host precursor proteins to β-pleated sheet configurations. J. Neuroimmunol. 20, 95–110 (1988).

    CAS  PubMed  Google Scholar 

  16. Come, J. H., Fraser, P. E. & Lansbury, P. T. J. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl Acad. Sci. USA 90, 5959–5963 (1993).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med. 4, 1157–1165 (1998).

    CAS  PubMed  Google Scholar 

  18. Cronier, S. et al. Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem. J. 416, 297–305 (2008).

    CAS  PubMed  Google Scholar 

  19. Sandberg, M. K. et al. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nature Commun. 5, 4347 (2014).

    ADS  CAS  Google Scholar 

  20. Fraser, H. & Dickinson, A. G. Scrapie in mice: agent-strain differences in the distribution and intensity of grey matter vacuolation. J. Comp. Pathol. 83, 29–40 (1973).

    CAS  PubMed  Google Scholar 

  21. Bessen, R. A. & Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996).

    ADS  CAS  PubMed  Google Scholar 

  23. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    ADS  CAS  PubMed  Google Scholar 

  24. Bessen, R. A. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375, 698–700 (1995).

    ADS  CAS  PubMed  Google Scholar 

  25. Bruce, M. et al. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil. Trans. R. Soc. Lond. B 343, 405–411 (1994).

    ADS  CAS  Google Scholar 

  26. Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    CAS  PubMed  Google Scholar 

  27. Collinge, J. et al. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature 378, 779–783 (1995).

    ADS  CAS  PubMed  Google Scholar 

  28. Collinge, J. Variant Creutzfeldt–Jakob disease. Lancet 354, 317–323 (1999).

    CAS  PubMed  Google Scholar 

  29. Collinge, J. & Clarke, A. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).

    ADS  CAS  PubMed  Google Scholar 

  30. Wadsworth, J. D. et al. Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science 306, 1793–1796 (2004).

    ADS  CAS  PubMed  Google Scholar 

  31. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997).

    ADS  CAS  PubMed  Google Scholar 

  32. Bruce, M. E. & Dickinson, A. G. Biological evidence that scrapie agent has an independent genome. J. Gen. Virol. 68, 79–89 (1987).

    PubMed  Google Scholar 

  33. Kimberlin, R. H. & Walker, C. A. Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J. Gen. Virol. 39, 487–496 (1978).

    CAS  PubMed  Google Scholar 

  34. Polymenidou, M. et al. Coexistence of multiple PrPSc types in individuals with Creutzfeldt–Jakob disease. Lancet Neurol. 4, 805–814 (2005).

    CAS  PubMed  Google Scholar 

  35. Yull, H. M. et al. Detection of type 1 prion protein in variant Creutzfeldt–Jakob disease. Am. J. Pathol. 168, 151–157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor, D. M., Fernie, K., McConnell, I. & Steele, P. J. Observations on thermostable subpopulations of the unconventional agents that cause transmissible degenerative encephalopathies. Vet. Microbiol. 64, 33–38 (1998).

    CAS  PubMed  Google Scholar 

  37. Oelschlegel, A. M. & Weissmann, C. Acquisition of drug resistance and dependence by prions. PLoS Pathog. 9, e1003158 (2013). Refs 37 and 91 demonstrate that prion populations or quasispecies can develop drug resistance rapidly through the selection of resistant conformers.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    ADS  CAS  PubMed  Google Scholar 

  39. Hegde, R. S. et al. A transmembrane from of the prion protein in neurodegenerative disease. Science 279, 827–834 (1998).

    ADS  CAS  PubMed  Google Scholar 

  40. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002).

    ADS  CAS  PubMed  Google Scholar 

  41. Chesebro, B. et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439 (2005).

    ADS  CAS  PubMed  Google Scholar 

  42. Sonati, T. et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501, 102–106 (2013).

    ADS  CAS  PubMed  Google Scholar 

  43. Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    ADS  PubMed  Google Scholar 

  44. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    PubMed  Google Scholar 

  46. Manson, J. C., Clarke, A., McBride, P. A., McConnell, I. & Hope, J. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  47. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    ADS  CAS  PubMed  Google Scholar 

  48. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).

    ADS  CAS  PubMed  Google Scholar 

  49. Collinge, J. et al. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006).

    PubMed  Google Scholar 

  50. Race, R., Raines, A., Raymond, G. J., Caughey, B. & Chesebro, B. Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistant species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt–Jakob disease in humans. J. Virol. 75, 10106–10112 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hill, A. F. & Collinge, J. Subclinical prion infection. Trends Microbiol. 11, 578–584 (2003).

    CAS  PubMed  Google Scholar 

  52. Thackray, A. M., Klein, M. A., Aguzzi, A. & Bujdoso, R. Chronic subclinical prion disease induced by low-dose inoculum. J. Virol. 76, 2510–2517 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thackray, A. M., Klein, M. A. & Bujdoso, R. Subclinical prion disease induced by oral inoculation. J. Virol. 77, 7991–7998 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Goedert, M. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).

    PubMed  Google Scholar 

  55. Walsh, D. M. & Selkoe, D. J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Rev. Neurosci. 17, 251–260 (2016). A counterview to the extensive literature on prion-like mechanisms in neurodegeneration, which questions the role of propagating protein assemblies in pathogenesis and emphasises the role of selective neuronal vulnerability.

    CAS  Google Scholar 

  56. Fraser, H. & Dickinson, A. G. Targeting of scrapie lesions and spread of agent via the retino-tectal projection. Brain Res. 346, 32–41 (1985).

    CAS  PubMed  Google Scholar 

  57. Vickery, C. M., Beck, K. E., Simmons, M. M., Hawkins, S. A. & Spiropoulos, J. Disease characteristics of bovine spongiform encephalopathy following inoculation into mice via three different routes. Int. J. Exp. Pathol. 94, 320–328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bruce, M. E., Fraser, H., McBride, P. A., Scott, J. R. & Dickinson, A. G. in Prion Diseases of Humans and Animals (eds Prusiner, S. B., Collinge, J., Powell, J. & Anderton, B.) Ch. 40 (Ellis Horwood, 1992).

    Google Scholar 

  59. Schmidt, C. et al. A systematic investigation of production of synthetic prions from recombinant prion protein. Open Biol. 5, 150165 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Salvadores, N., Shahnawaz, M., Scarpini, E., Tagliavini, F. & Soto, C. Detection of misfolded Aβ oligomers for sensitive biochemical diagnosis of Alzheimer's disease. Cell Rep. 7, 261–268 (2014). A proof-of-principle adaptation of the protein misfolding cyclic amplification method to prions to amplify amyloid-β oligomers, which suggests the possibility of quantitative in vitro analysis of amyloid-β seeding activity.

    CAS  PubMed  Google Scholar 

  61. Herva, M. E. et al. Anti-amyloid compounds inhibit α-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J. Biol. Chem. 289, 11897–11905 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Diaz-Espinoza, R. & Soto, C. High-resolution structure of infectious prion protein: the final frontier. Nature Struct. Mol. Biol. 19, 370–377 (2012).

    CAS  Google Scholar 

  63. Requena, J. R. & Wille, H. The structure of the infectious prion protein: experimental data and molecular models. Prion 8, 60–66 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jackson, G. S. et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937 (1999).

    ADS  CAS  PubMed  Google Scholar 

  65. Hornemann, S. & Glockshuber, R. A scrapie-like unfolding intermediate of the prion protein domain PrP(121–231) induced by acidic pH. Proc. Natl Acad. Sci. USA 95, 6010–6014 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Daude, N., Lehmann, S. & Harris, D. A. Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J. Biol. Chem. 272, 11604–11612 (1997).

    CAS  PubMed  Google Scholar 

  67. Morillas, M., Vanik, D. L. & Surewicz, W. K. On the mechanism of α-helix to β-sheet transition in the recombinant prion protein. Biochemistry 40, 6982–6987 (2001).

    CAS  PubMed  Google Scholar 

  68. Torrent, J. et al. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry 43, 7162–7170 (2004).

    CAS  PubMed  Google Scholar 

  69. Tattum, M. H. et al. Elongated oligomers assemble into mammalian PrP amyloid fibrils. J. Mol. Biol. 357, 975–985 (2006).

    CAS  PubMed  Google Scholar 

  70. Collinge, J. et al. Transmission of fatal familial insomnia to laboratory animals. Lancet 346, 569–570 (1995).

    CAS  PubMed  Google Scholar 

  71. Lasmézas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402–405 (1997).

    PubMed  Google Scholar 

  72. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    ADS  CAS  PubMed  Google Scholar 

  73. Deleault, N. R., Harris, B. T., Rees, J. R. & Supattapone, S. Formation of native prions from minimal components in vitro. Proc. Natl Acad. Sci. USA 104, 9741–9746 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, J. I. et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 285, 14083–14087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Edgeworth, J. A. et al. Spontaneous generation of mammalian prions. Proc. Natl Acad. Sci. USA 107, 14402–14406 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    CAS  PubMed  Google Scholar 

  79. Safar, J. G. et al. Search for a prion-specific nucleic acid. J. Virol. 79, 10796–10806 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Caughey, B. & Lansbury, P. T., Jr. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    CAS  PubMed  Google Scholar 

  82. Kraus, A., Groveman, B. R. & Caughey, B. Prions and the potential transmissibility of protein misfolding diseases. Annu. Rev. Microbiol. 67, 543–564 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McKinley, M. P. et al. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J. Virol. 65, 1340–1351 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wenborn, A. et al. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Sci. Rep. 5, 10062 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Terry, C. et al. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils. Open Biol. 6, 160035 (2016). Precise cell-culture-based prion infectivity assays were used to define the physical relationship between PrP rods and prion infectivity, and electron tomography was used to define their architecture.

    PubMed  PubMed Central  Google Scholar 

  86. Khalili-Shirazi, A. et al. PrP glycoforms are associated in a strain-specific ratio in native PrPSc. J. Gen. Virol. 86, 2635–2644 (2005).

    CAS  PubMed  Google Scholar 

  87. Manson, J. C. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127 (1994).

    CAS  PubMed  Google Scholar 

  88. Mallucci, G. R. et al. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53, 325–335 (2007).

    CAS  PubMed  Google Scholar 

  89. Hosszu, L. L. P. et al. Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nature Struct. Biol. 6, 740–743 (1999).

    CAS  PubMed  Google Scholar 

  90. Nicoll, A. J. et al. Pharmacological chaperone for the structured domain of human prion protein. Proc. Natl Acad. Sci. USA 107, 17610–17615 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Berry, D. B. et al. Drug resistance confounding prion therapeutics. Proc. Natl Acad. Sci. USA 110, E4160–E4169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    ADS  CAS  PubMed  Google Scholar 

  94. Antonyuk, S. V. et al. Crystal structure of human prion protein bound to a therapeutic antibody. Proc. Natl Acad. Sci. USA 106, 2554–2558 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. White, A. R. et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422, 80–83 (2003).

    ADS  CAS  PubMed  Google Scholar 

  96. Song, C. H. et al. Effect of intraventricular infusion of anti-prion protein monoclonal antibodies on disease progression in prion-infected mice. J. Gen. Virol. 89, 1533–1544 (2008).

    CAS  PubMed  Google Scholar 

  97. Ohsawa, N. et al. Therapeutic effect of peripheral administration of an anti-prion protein antibody on mice infected with prions. Microbiol. Immunol. 57, 288–297 (2013).

    CAS  PubMed  Google Scholar 

  98. Klyubin, I. et al. Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer's disease Aβ synaptotoxicity. J. Neurosci. 34, 6140–6145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gajdusek, D. C., Gibbs, C. J. Jr & Alpers M. P. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 209, 794–796 (1966).

    ADS  CAS  PubMed  Google Scholar 

  100. Gibbs, C. J. Jr. et al. Creutzfeldt–Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161, 388–389 (1968).

    ADS  PubMed  Google Scholar 

  101. Brown, P. et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 35, 513–529 (1994).

    CAS  PubMed  Google Scholar 

  102. Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Induction of β(A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate: comparison with transmission of spongiform encephalopathy. Mol. Neurobiol. 8, 25–39 (1994). Refs 102 and 103 are important studies that demonstrate the seeding of amyloid-β pathology in the primate brain by intracerebral inoculation with tissue affected by AD.

    CAS  PubMed  Google Scholar 

  103. Ridley, R. M., Baker, H. F., Windle, C. P., & Cummings, R. M. Very long term studies of the seeding of β-amyloidosis in primates. J. Neural Transm. 113, 1243–1251 (2006).

    CAS  PubMed  Google Scholar 

  104. Gandy, S. Lifelong management of amyloid-β metabolism to prevent Alzheimer's disease. N. Engl. J. Med. 367, 864–866 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nature Neurosci. 15, 349–357 (2012).

    CAS  PubMed  Google Scholar 

  106. Walsh, D. M. & Teplow, D. B. Alzheimer's disease and the amyloid β-protein. Prog. Mol. Biol. Transl. Sci. 107, 101–124 (2012).

    CAS  PubMed  Google Scholar 

  107. Jan, A., Hartley, D. M. & Lashuel, H. A. Preparation and characterization of toxic Aβ aggregates for structural and functional studies in Alzheimer's disease research. Nature Protoc. 5, 1186–1209 (2010).

    CAS  Google Scholar 

  108. Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    ADS  CAS  PubMed  Google Scholar 

  110. Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc. Natl Acad. Sci. USA 109, 11025–11030 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  111. Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D. & Soto, C. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry 17, 1347 (2012).

    CAS  PubMed  Google Scholar 

  112. Eisele, Y. S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010). Provides evidence to show that amyloid-β seeds can be transported from the abdomen to induce amyloid-β deposition in the CNS in a mouse model.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clavaguera, F. et al. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol. 127, 299–301 (2014).

    PubMed  Google Scholar 

  114. Prusiner, S. B. et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl Acad. Sci. USA 112, E5308–E5317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ward, H. J. et al. Sporadic Creutzfeldt–Jakob disease and surgery: a case-control study using community controls. Neurology 59, 543–548 (2002).

    CAS  PubMed  Google Scholar 

  116. Mahillo-Fernandez, I. et al. Surgery and risk of sporadic Creutzfeldt–Jakob disease in Denmark and Sweden: registry-based case-control studies. Neuroepidemiology 31, 229–240 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. Jaunmuktane, Z. et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525, 247–250 (2015). A report of the possible iatrogenic transmission of amyloid-β pathology and CAA many years after treatment with pituitary extracts derived from cadavers.

    ADS  CAS  PubMed  Google Scholar 

  118. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Frontzek, K., Lutz, M. I., Aguzzi, A., Kovacs, G. G. & Budka, H. Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt–Jakob disease after dural grafting. Swiss Med. Wkly. 146, w14287 (2016). Refs 119 and 120 provide evidence that amyloid-β pathology and CAA might also be iatrogenically transmitted to humans through neurosurgical procedures involving dura mater grafts.

    PubMed  Google Scholar 

  120. Kovacs, G. G. et al. Dura mater is a potential source of Aβ seeds. Acta Neuropathol. 131, 911–23 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Brandner, S. et al. Central and peripheral pathology of kuru: pathological analysis of a recent case and comparison with other forms of human prion disease. Phil. Trans. R. Soc. B 363, 3755–3763 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Wadsworth, J. D. et al. Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet 358, 171–180 (2001).

    CAS  PubMed  Google Scholar 

  123. Urwin, P. J., Mackenzie, J. M., Llewelyn, C. A., Will, R. G. & Hewitt, P. E. Creutzfeldt–Jakob disease and blood transfusion: updated results of the UK Transfusion Medicine Epidemiology Review Study. Vox Sang. 110, 310–116 (2016).

    CAS  PubMed  Google Scholar 

  124. Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2014).

    PubMed  Google Scholar 

  125. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    ADS  CAS  PubMed  Google Scholar 

  126. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013).

    CAS  PubMed  Google Scholar 

  128. Bousset, L. et al. Structural and functional characterization of two α-synuclein strains. Nature Commun. 4, 2575 (2013).

    ADS  Google Scholar 

  129. Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. 14, 1017–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lu, J. X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154, 1257–1268 (2013). A molecular structural model for amyloid-β40 fibrils seeded from the brains of two people with AD, which suggests that fibrils in the brain might spread from a single site of nucleation and that structural variations in fibrils might correlate with variations in AD phenotype.

    CAS  PubMed  Google Scholar 

  131. Cohen, M. L. et al. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. Brain 138, 1009–1022 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Watts, J. C. et al. Serial propagation of distinct strains of Aβ prions from Alzheimer's disease patients. Proc. Natl Acad. Sci. USA 111, 10323–10328 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wadsworth, J. D., Asante, E. A. & Collinge, J. Contribution of transgenic models to understanding human prion disease. Neuropathol. Appl. Neurobiol. 36, 576–597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Asante, E. A. et al. Transmission properties of human PrP 102L prions challenge the relevance of mouse models of GSS. PLoS Pathog. 11, e1004953 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Scheltens, P. et al. Alzheimer's disease. Lancet 388, 10–6736 505–517 (2016).

    Google Scholar 

  136. Hatami, A., Albay, R. III, Monjazeb, S., Milton, S. & Glabe, C. Monoclonal antibodies against Aβ42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in Alzheimer disease brain. J. Biol. Chem. 289, 32131–32143 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tjernberg, L. O., Rising, A., Johansson, J., Jaudzems, K. & Westermark, P. Transmissible amyloid. J. Intern. Med. 280, 153–163 (2016).

    CAS  PubMed  Google Scholar 

  139. Mead, S. et al. Clinical trial simulations based on genetic stratification and the natural history of a functional outcome measure in Creutzfeldt–Jakob disease. JAMA Neurol. 73, 447–455 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Edgeworth, J. A. et al. Detection of prion infection in variant Creutzfeldt–Jakob disease: a blood-based assay. Lancet 377, 487–493 (2011).

    CAS  PubMed  Google Scholar 

  141. Sawyer, E. B., Edgeworth, J. A., Thomas, C., Collinge, J. & Jackson, G. S. Preclinical detection of infectivity and disease-specific PrP in blood throughout the incubation period of prion disease. Sci Rep. 5, 17742 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gill, O. N. et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. Br. Med. J. 347, f5675 (2013). A study of more than 30,000 archived surgical appendix samples that searched for evidence of vCJD prion infection; it suggested that about 1 in 2,000 of the UK population might be infected.

    Google Scholar 

  143. Eisele, Y. S. et al. Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc. Natl Acad. Sci. USA 106, 12926–12931 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. House of Commons Science and Technology Committee. After the storm? UK blood safety and the risk of variant Creutzfeldt–Jakob disease http://www.publications.parliament.uk/pa/cm201415/cmselect/cmsctech/327/327.pdf (House of Commons Science and Technology Committee, 2014).

Download references

Acknowledgements

I am grateful to R. Newton for the preparation of figures and to H. Saibil, D. Walsh, J. Wadsworth, G. Jackson and S. Mead for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Collinge.

Ethics declarations

Competing interests

J.C. is a director and shareholder of D-Gen Limited, an academic spin-out company working the field of prion-disease diagnosis, decontamination and therapy.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 539, 217–226 (2016). https://doi.org/10.1038/nature20415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20415

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing