Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds

Abstract

Carbon–carbon (C–C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C–C bond formation. Strategies that allow C–C bond formation at inert carbon–hydrogen (C–H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules1,2. Here we report a method for the formation of C–C bonds by directed cleavage of traditionally non-reactive C–H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C–C bond formation at unactivated sp3 C–H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen–hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C–H bonds through a strategy involving hydrogen-atom transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selectivity issues with C–H bond functionalization.
Figure 2: Photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds.
Figure 3: Regioselective functionalization of sp3 C–H bonds.

Similar content being viewed by others

References

  1. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011)

    Article  CAS  Google Scholar 

  2. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012)

    Article  CAS  Google Scholar 

  3. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011)

    Article  CAS  Google Scholar 

  4. Lawrence, J. D., Takahashi, M., Bae, C. & Hartwig, J. F. Regiospecific functionalization of methyl C–H bonds of alkyl groups in reagents with heteroatom functionality. J. Am. Chem. Soc. 126, 15334–15335 (2004)

    Article  CAS  Google Scholar 

  5. Shabashov, D. & Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon–hydrogen bonds. J. Am. Chem. Soc. 132, 3965–3972 (2010)

    Article  CAS  Google Scholar 

  6. He, J. et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α-amino acids. Science 343, 1216–1220 (2014)

    Article  CAS  ADS  Google Scholar 

  7. Jiang, H., He, J., Liu, T. & Yu, J.-Q. Ligand enabled γ-C(sp3)–H olefination of amines: en route to pyrrolidines. J. Am. Chem. Soc. 138, 2055–2059 (2016)

    Article  CAS  Google Scholar 

  8. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H bonds using a transient directing group. Science 351, 252–256 (2016)

    Article  CAS  ADS  Google Scholar 

  9. Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016)

    Article  CAS  ADS  Google Scholar 

  10. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010)

    Article  CAS  ADS  Google Scholar 

  11. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014)

    Article  CAS  Google Scholar 

  12. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014)

    Article  CAS  ADS  Google Scholar 

  13. Archambeau, A. & Rovis, T. Rhodium(III)-catalyzed allylic C(sp3)–H activation of alkenyl sulfonamides: unexpected formation of azabicycles. Angew. Chem. Int. Ed. 54, 13337–13340 (2015)

    Article  CAS  Google Scholar 

  14. Robertson, J., Pillai, J. & Lush, R. K. Radical translocation reactions in synthesis. Chem. Soc. Rev. 30, 94–103 (2001)

    Article  CAS  Google Scholar 

  15. Cekovic, Z. Reactions of carbon radicals generated by 1,5-transposition of reactive centers. J. Serb. Chem. Soc 70, 287–318 (2005)

    Article  CAS  Google Scholar 

  16. Zard, S. Z. Recent progress in the generation and use of nitrogen-centered radicals. Chem. Soc. Rev. 37, 1603–1618 (2008)

    Article  CAS  Google Scholar 

  17. Nikishin, G. I., Troyansky, E. I. & Lazareva, M. I. Regiospecific oxidative cyclization of N-methylsulfonylamines into pyrrolidines. Tetrahedron 41, 4279–4288 (1985)

    Article  CAS  Google Scholar 

  18. Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014)

    Article  CAS  Google Scholar 

  19. Zhang, J., Li, Y., Zhang, F., Hu, C. & Chen, Y. Generation of alkoxy radicals by photoredox catalysis enables selective C(sp3)–H functionalization under mild reaction conditions. Angew. Chem. Int. Ed. 55, 1872–1875 (2016)

    Article  CAS  Google Scholar 

  20. Li, J. J. Named Reactions for Functional Group Transformation 423–437 (Wiley, 2007)

  21. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005)

    Article  CAS  Google Scholar 

  22. Nechab, M., Mondal, S. & Bertrand, M. P. 1,n-Hydrogen-atom transfer (HAT) reactions in which n ≠ 5 an updated inventory. Chem. Eur. J. 20, 16034–16059 (2014)

    Article  CAS  Google Scholar 

  23. Tassone, D. M., Boyce, E., Guyer, J. & Nuzum, D. Pregabalin: a novel γ-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin. Ther. 29, 26–48 (2007)

    Article  CAS  Google Scholar 

  24. Choi, G. J. & Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 137, 9226–9229 (2015)

    Article  CAS  Google Scholar 

  25. Miller, D. C., Choi, G. J., Orbe, H. S. & Knowles, R. R. Catalytic olefin hydroamidation enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 137, 13492–13495 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NIGMS (GM80442) for support. J.C.K.C. thanks the Croucher Foundation (Hong Kong) for support. We thank M. Burns (CSU) for technical assistance. We thank R. R. Knowles (Princeton University) for sharing results before publication.

Author information

Authors and Affiliations

Authors

Contributions

T.R. and J.C.K.C. conceived the concept and prepared the manuscript. T.R. directed the investigation. J.C.K.C. developed and studied the reaction.

Corresponding author

Correspondence to Tomislav Rovis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks A. Studer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data – see contents page for details. (PDF 6073 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016). https://doi.org/10.1038/nature19810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19810

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing