Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles

Abstract

The distribution, accumulation and circulation of oxygen and hydrogen in Earth’s interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere1. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen–iron (O–Fe) system, overlapping with the entire pressure–temperature–composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states1, spin states2 and phase stabilities3,4 of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth’s formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as ‘rust’ and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FeO2 phase.
Figure 2: Integrated XRD pattern and Rietveld refinement of the pyrite-type FeO2 phase.
Figure 3: Raman peak of the hydrogen Q1 vibron in dense neon.
Figure 4: Crystal structure search results.

Similar content being viewed by others

References

  1. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Badro, J. et al. Iron partitioning in Earth's mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ono, S. & Ohishi, Y. In situ X-ray observation of phase transformation in Fe2O3 at high pressures and high temperatures. J. Phys. Chem. Solids 66, 1714–1720 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Bykova, E. et al. Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Commun. 7, 10661 (2016)

    Article  ADS  CAS  Google Scholar 

  5. Lavina, B. et al. Discovery of the recoverable high-pressure iron oxide Fe4O5 . Proc. Natl Acad. Sci. USA 108, 17281–17285 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavina, B. & Meng, Y. Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6 . Sci. Adv. 1, e1400260 (2015)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  7. Meng, Y., Hrubiak, R., Rod, E., Boehler, R. & Shen, G. New developments in laser-heated diamond anvil cell with in-situ x-ray diffraction at High Pressure Collaborative Access Team. Rev. Sci. Instrum. 86, 072201 (2015)

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Akahama, Y. & Kawamura, H. High-pressure Raman spectroscopy of solid oxygen. Phys. Rev. B 54, R15602–R15605 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Sørensen, H. O. et al. Multigrain crystallography. Z. Kristallogr. 227, 63–78 (2012)

    Article  CAS  Google Scholar 

  10. Zhang, L. et al. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proc. Natl Acad. Sci. USA 110, 6292–6295 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, L. et al. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 344, 877–882 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fujihisa, H. et al. O8 cluster structure of the epsilon phase of solid oxygen. Phys. Rev. Lett. 97, 085503 (2006)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Gleason, A. E., Jeanloz, R. & Kunz, M. Pressure–temperature stability studies of FeOOH using X-ray diffraction. Am. Mineral. 93, 1882–1885 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Howie, R. T., Dalladay-Simpson, P. & Gregoryanz, E. Raman spectroscopy of hot hydrogen above 200 GPa. Nature Mater. 14, 495–499 (2015)

    Article  ADS  CAS  Google Scholar 

  15. Loubeyre, P., Letoullec, R. & Pinceaux, J. P. Properties of H2 under strong compression in a Ne matrix. Phys. Rev. Lett. 67, 3271–3274 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Jacobsen, S. D. & van der Lee, S. (eds) Earth's Deep Water Cycle Vol. 168 (American Geophysical Union, 2006)

  17. Nishi, M. et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geosci. 7, 224–227 (2014)

    Article  ADS  CAS  Google Scholar 

  18. Pamato, M. G. et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geosci. 8, 75–79 (2014)

    Article  ADS  CAS  Google Scholar 

  19. Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 44, 227–237 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. Weerasinghe, G. L., Pickard, C. J. & Needs, R. J. Computational searches for iron oxides at high pressures. J. Phys. Condens. Matter 27, 455501 (2015)

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Dziewonski, A. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  23. Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493, 84–88 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geosci. 7, 366–370 (2014)

    Article  ADS  CAS  Google Scholar 

  25. Hirose, K., Fei, Y., Ma, Y. & Mao, H. K. The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397, 53–56 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Ren, Z. Y., Ingle, S., Takahashi, E., Hirano, N. & Hirata, T. The chemical structure of the Hawaiian mantle plume. Nature 436, 837–840 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hutko, A. R., Lay, T., Garnero, E. J. & Revenaugh, J. Seismic detection of folded, subducted lithosphere at the core–mantle boundary. Nature 441, 333–336 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Holzapfel, C., Rubie, D., Frost, C. & Langenhorst, F. Fe-Mg interdiffusion in (Mg,Fe)SiO3 perovskite and lower mantle reequilibration. Science 309, 1707–1710 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Yang, J. et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 27, 459–485 (2015)

    Article  ADS  CAS  Google Scholar 

  30. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Shim, S.-H. & Duffy, T. S. Raman spectroscopy of Fe2O3 to 62 GPa. Am. Mineral. 87, 318–326 (2002)

    Article  ADS  CAS  Google Scholar 

  34. Fei, Y. et al. Toward an internally consistent pressure scale. Proc. Natl Acad. Sci. USA 104, 9182–9186 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loubeyre, P., Letoullec, R. & Pinceaux, J. P. Raman measurements of the vibrational properties of H2 as a guest molecule in dense helium, neon, argon, and deuterium systems up to 40 GPa. Phys. Rev. B 45, 12844–12853 (1992)

    Article  ADS  CAS  Google Scholar 

  36. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)

    Article  ADS  CAS  Google Scholar 

  39. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  ADS  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Article  ADS  CAS  Google Scholar 

  42. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Fei for providing haematite powder samples; A. Goncharov for conducting the laser-heating treatment; and D. Z. Zhang, J.-F. Shu, J. Smith, Y. Kono, K. Yang, S. Yan, Z. H. Yu, Y. Yuan, M.Q. Hou and L. Xu for beamline technical support. XRD measurements were performed at the High Pressure Collaborative Access Team (HPCAT 16-IDB and 16-BMD) Advanced Photon Source (APS), Argonne National Laboratory, and the BL15U1 beamline, Shanghai Synchrotron Radiation Facility in China. Part of the experiments was performed at the 13BM-C experimental station of the GeoSoilEnviroCARS facility at the APS. HPCAT operations are supported by the DOE-NNSA under award number DE-NA0001974 and by the DOE-BES under award number DE-FG02-99ER45775, with partial instrumentation funding by the NSF. 13BM-C operation is supported by COMPRES through the Partnership for Extreme Crystallography (PX2) project, under NSF Cooperative Agreement EAR 11-57758. APS is supported by the DOE-BES, under contract number DE-AC02-06CH11357. Q.H. and H.-K.M. were supported by NSF grants EAR-1345112 and EAR-1447438. L.Z. was supported by the Foundation of President of China Academy of Engineering Physics (grant no. 201402032) and the National Natural Science Foundation of China (grant no. 41574080). This work was also supported in part by the National Natural Science Foundation of China (grant number U1530402).

Author information

Authors and Affiliations

Authors

Contributions

W.Y., L.Y. and Q.H. carried out the experiment. Y.M. conducted the laser heating for the first synthesis of FeO2. W.Y., L.Z., Q.H. and H.-K.M. performed the experimental data analysis. D.Y.K. predicted the FeO2 structure and performed the computer simulation. H.-K.M. conceived and designed the project and directed the calculations and experiments. Q.H. and H.-K.M. wrote the manuscript. All authors contributed to the discussion of the results and revision of the manuscript.

Corresponding author

Correspondence to Ho-Kwang Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Bonding lengths and angles in pyrite-type FeO2 at 76 GPa.

The structure is viewed along the x axis of the experimental FeO2 unit cell.

Extended Data Figure 2 XRD pattern series by decompressing the P-phase.

The P-phase becomes weak in intensity at 41 GPa and totally disappears at 31 GPa and below. The decompressed sample eventually recovered to the α-Fe2O3 phase at low pressure. P indicates the P-phase FeO2; O indicates solid O2; H indicates α-Fe2O3 (haematite). Fe2O3 contains post-perovskite type and Aba2-structured high-pressure phases.

Extended Data Figure 3 Synthesis pressuretemperature conditions for FeO2.

a, Open circles indicate the coexistence of Fe2O3 and O2. Solid squares indicate the appearance of P-phase FeO2. FeO2 was synthesized between 72 GPa and 75 GPa. b, Open circles indicate FeOOH. Decomposition pressure was constrained between 78 GPa and 87 GPa. Sample temperature was measured using the spectroradiometric method and errors are estimated from the goodness of fit to the spectroradiometric profile.

Extended Data Figure 4 XRD patterns of FeOOH through the experimental pressuretemperature path.

a, Goethite sample (G) in neon and Re gasket at 0.9 GPa. b, As in a, compressed to 35 GPa. The XRD peaks include goethite, solidified Ne, and the Re gasket. c, As in a, compressed to 92 GPa. The sample peaks remain and shift to higher Q. d, After laser-heating and quenching to ambient temperature, the pressure dropped to 87 GPa, and the goethite peaks disappeared. The new pattern consists of peaks of the P-phase, Ne and minor amounts of ε-FeOOH (red stars).

Extended Data Figure 5 Phonon dispersion relations of FeO2 P-phase.

a, At 0 GPa; b, At 300 GPa. The P-phase is mechanically stable at 0 GPa and 300 GPa.

Extended Data Table 1 Additional multigrain XRD data was obtained at 13BM-C
Extended Data Table 2 The lattice parameters and atomic positions of pyrite-type FeO2 at 76 GPa
Extended Data Table 3 Bonding lengths and angles in pyrite-type FeO2 at 76 GPa

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Kim, D., Yang, W. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016). https://doi.org/10.1038/nature18018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing