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Cell-of-origin chromatin organization shapes the
mutational landscape of cancer
Paz Polak1,2*, Rosa Karlić3*, Amnon Koren2,4, Robert Thurman5, Richard Sandstrom5, Michael S. Lawrence2, Alex Reynolds5,
Eric Rynes5, Kristian Vlahoviček3,6, John A. Stamatoyannopoulos5,7 & Shamil R. Sunyaev1,2

Cancer is a disease potentiatedbymutations in somatic cells.Cancer
mutations are not distributed uniformly along the human genome.
Instead, different human genomic regions vary by up to fivefold in
the local density of cancer somaticmutations1, posinga fundamental
problem for statistical methods used in cancer genomics. Epigeno-
mic organization has been proposed as a major determinant of the
cancermutational landscape1–5.However, both somaticmutagenesis
and epigenomic features are highly cell-type-specific6,7. We investi-
gated thedistributionofmutations inmultiple independent samples
of diverse cancer types and compared them to cell-type-specific epi-
genomic features.Hereweshowthat chromatinaccessibility andmodi-
fication, together with replication timing, explain up to 86% of the
variance in mutation rates along cancer genomes. The best predic-
tors of local somaticmutationdensity are epigenomic features derived
from the most likely cell type of origin of the correspondingmalig-
nancy.Moreover, we find that cell-of-origin chromatin features are
much stronger determinants of cancermutationprofiles than chro-
matin features of matched cancer cell lines. Furthermore, we show
that the cell type of origin of a cancer can be accurately determined
based on the distribution of mutations along its genome. Thus, the
DNA sequence of a cancer genome encompasses a wealth of infor-
mationabout the identity andepigenomic features of its cell of origin.
Recent studies have begun to address the underlying causes of cancer

mutational heterogeneity by comparing mutation rate variation to the
distribution of sequence features, gene expression and epigeneticmarks
along the genome2–5.Amajor limitationofprevious studieswas their uni-
form treatment of mutations from different cancers, and their consid-
eration of epigenetic marks from a single cell type, usually a cell type
different from the cancer tissue of origin. However, cancer is far from
beingadiseaseofuniformorigin,progressionandcell biology. Instead,dif-
ferent cancer typesdiffer in theiroverallmutation rates, theirpredominant
mutation types, and the distributionofmutations along their genomes1.
Substantial variation also exists in the epigenomic landscape ofdifferent
tissues, specifically in patterns of chromatin accessibility, histonemodi-
fications, gene expression and DNA replication timing7–10. Full under-
standingof the factors contributing tomutational heterogeneity in cancer
genomes thus requires the evaluationof the relationshipbetweenmultiple
epigeneticmarks andmutation patterns in a cell-type-specificmanner.
Weanalysed a total of 173 cancer genomes fromeightdifferent cancer

types that represent awide range of tissues of origin, carcinogenicmech-
anisms, and mutational signatures: melanoma11, multiple myeloma12,
lung adenocarcinoma13, liver cancer14, colorectal cancer15, glioblastoma16,
oesophageal adenocarcinoma17 and lung squamous cell carcinoma18.
Regional variations inmutation density appeared similar, althoughnot
identical, among the different cancer types (Extended Data Fig. 1).
We compared the genomic distribution ofmutations in these cancer

genomes to424epigenetic features thatweremeasuredby theEpigenome
Roadmap consortium9. These features were derived from106 different

cell types from 45 differ-
ent tissue types, encom-
passing the established
or likely cell types of ori-
gin ofmost of the cancer

types thatwe investigated (Methods andExtendedData Fig. 2). Notably,
thesedataderive fromprimaryhumancells and tissues rather thanmalig-
nant cell lines. These epigenetic features comprised eightdifferent types
of variables, including DNase I hypersensitivity (a global measure of
chromatin accessibility)7 andvarioushistonemodifications.An example
of the variation inmutationdensity along chromosomes at a 1Mb scale
togetherwith thedensity of DNase I hypersensitive sites (DHSs) is shown
in Fig. 1. In this case, as inmost other cases (see later), epigenomics fea-
tures indicative of active chromatin and transcription were associated
with lowmutationdensity,whereas repressive chromatin featureswere
associated with regions of high mutation density. Notably, these stat-
istical associations do not necessarily imply causal effects of individual
chromatin features, nor point to specific biological mechanisms.
The comparison of individual epigenomic features with local muta-

tion density revealed that the genomic distribution of chromatin fea-
tures corresponding to the tumour’s cell type of origin ismore strongly
associated with local mutation density than the distribution of features
found in unrelated cell types. For example, DHSs from melanocytes
explained a substantially larger fraction of the variance in melanoma
mutation density thanDHSs fromother cell types, even from the same
tissue (skin) (Fig. 1b).As another example, even thoughH3K4me1marks
inmelanocytes and hepatocytes are highly correlated (r5 0.8), the dis-
tribution of mutations in liver cancer followed the levels of H3K4me1
in hepatocytes but not in melanocytes, whereas melanoma mutations
correlatedwith the levels of H3K4me1 inmelanocytes but not in hepa-
tocytes (Fig. 1c).
This initial observation suggested that the impact of chromatin struc-

ture on local mutation density is highly cell-type specific. The compre-
hensive representationof different cell types in theEpigenomeRoadmap
could thus enable improvedprediction accuracy ofmutations compared
to previous studies. To rigorously quantify the contributionof different
chromatinmarks andgene expression to regionalmutationdensity, and
the extent of cell type specificity, we used Random Forest regression
(Methods).
Remarkably, epigenetic features, togetherwith replication timingmea-

sured inENCODEconsortiumcell lines19, collectively accounted for74–
86% of the variance inmutation density in seven cancer types (Fig. 2a).
Inglioblastoma, forwhich fewermutationswere available for theanalysis,
55%of the variance inmutation density could be explained. This is sub-
stantially higher than inearlier studies4 and indicates that, at least for these
cancer types,wehave identified a set of epigenetic variables and cell types
that almost fully predict the mutational variability along the genome.
This enhanced prediction accuracy was not simply due to the larger size
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of the training data relative to previous studies, as the predictive ability
dropped by only,2–6%when only 10%of the datawas used (Extended
Data Fig. 3).
Prediction accuracy in individual samples is expected to be lower than

in samples pooledby cancer typedue to tumourheterogeneity, sampling
variance, and a lower number of mutations available for the analysis
(Extended Data Fig. 4). To evaluate the influences of these variables on
thepredictionabilityof theRandomForestmodel,we simulatedmutation
data sets of variable sizes generated by the model itself, and compared
the prediction accuracy of simulated and real data as a function of the
number ofmutations. Formost samples, epigenomic features explained
most (on average 70%) of the maximally predicted variance (Extended

Data Fig. 5), and more than was explained by earlier studies2,4 when
matching data set sizes. As a point of direct comparison with an earlier
study2 that did not use cell-type-specific chromatin marks, our model
explained 50%of the variance inmutation density in themelanoma cell
line COLO829 (ref. 20), compared with 29% in the earlier study.
Thepredictionaccuracywas similarwhether testing for allmutations

oronly themutations of thepredominant type (ExtendedDataFig. 6) in
each cancer type1,21 (Fig. 2b).Anotable exceptionwas lungadenocarcino-
ma,where a larger fraction of the variance could be explained forG.T
mutations associatedwith smoking1,13,22 than forC.Tmutations. This
difference was observed for both samples with G.T transversions13

and C.T transitions as the leading mutational sources (Fig. 2c).
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Figure 2 | Predicting local mutation density in cancer genomes using
Random Forest regression trained on 424 epigenomic profiles. Pearson
correlation between observed and predicted mutation densities along
chromosomes is shown. a, Actual versus predicted mutation densities in
eight cancers. b, c, Prediction accuracy represented as mean6 s.e.m.

(estimated using tenfold cross-validation). Panels show prediction accuracy
for all mutations and for nucleotide changes predominant in the
corresponding cancer (b), and prediction accuracy in lung adenocarcinoma
genomes stratified by smoking history and predominant nucleotide
changes (G.T or C.T) (c).
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in liver cells and in melanocytes. For both cancer genomes, mutation density
depends only on H3K4me1 marks measured in the cell of origin.
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Prediction accuracy was fully explained by chromatin features, with
gene expression and nucleotide content not providing any further
improvement to the accuracyof themodel. Even thoughgene expression
hasbeenunequivocallydemonstrated to influencemutationdensity, chro-
matin features appear to be statistically stronger predictors (Extended
Data Fig. 7).
When considering individual feature contributions tomutation rate

prediction, between six and nineteen variables passed the significance
threshold in any individual cancer type. There was a sweeping associ-
ation between cancermutations and chromatinmarksmeasured in the

cell type of origin of each cancer (Fig. 3a). For instance, six out of the
top ten features explainingvariation inmelanomamutationdensitywere
derived from melanocytes (Figs 1 and 3b). Similarly, seven out of the
nine top features explaining mutational profiles in liver cancer were
measured in liver cells. Comparable results were obtained formultiple
myeloma, colorectal adenocarcinoma and glioblastoma, where most
of the significant features were measured in haematopoietic, intestine
mucosa and brain tissues, respectively. For oesophageal adenocarci-
noma, the top predictors were chromatin features derived from stom-
achmucosa rather than fromoesophageal tissues; this is expected given
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that the analysed oesophageal adenocarcinomas were triggered by
Barrett’s oesophagus cells that resemble stomach epithelial cells23. Lung
adenocarcinomaand lung squamous cell carcinomawere the only excep-
tions in that the top predictors were scattered among different tissue
groups; the lack of tissue specificity in these cases likely results from the
absence of epigenomic marks from normal lung epithelial cells in our
data set.
The results of the Random Forest regression were confirmed using

backward feature selection to identify theminimal set of epigenetic pre-
dictors of mutations in each cancer type (Methods). As few as three to
five featureswere sufficient to capture the variance explained by the full
set of 424 different features (Extended Data Fig. 8), and in all cancers
besides lung (as above),most of these featureswere derived fromthecor-
responding cell types of origin.As amore direct test,we grouped all epi-
genomicdatabycellor tissue typeandcompared thecollectiveexplanatory
power of chromatin features derived from the cell types of origin versus
unmatched cell types. The results of this analysis confirmed the cell type
specificity of the association between chromatin features and mutation
density (Fig. 3c).
The above results pose a keyquestiononwhether epigenomic features

derived fromthecell typeoforiginare the strongestdeterminantsof cancer
mutations orwhether they simply serve as thebest available proxies to the
chromatin organization of the corresponding malignant cells. The avail-
ability of epigenomic data for the liver cancer cell lineHepG2 (ref. 8) and
formelanoma cell linesmade it possible to directly address this question.
Surprisingly, inbothcases, epigenomic features fromthecell typeoforigin
resulted in a higher prediction accuracy than those from the cancer cell
lines. The Random Forest predictor trained on chromatin features of
HepG2was less accurate in predicting the liver cancermutation density
than theanalogouspredictor trainedon features ofhepatocytes (Fig. 3d).
Similarly, chromatin accessibility in melanocytes was a much better
predictorofmutationdensity in theCOLO829melanomacell line (Fig. 3e
andExtendedDataFig. 9). Thus, chromatin features associatedwith car-
cinogenesis do not determine cancer mutations to the same extent as
chromatin features of the cells of origin. We envision two potential
explanations for this observation. First, most of the somatic mutations

observed in cancers may arise before the epigenetic changes linked to
neoplastic progression. Second, advanced tumours may undergo spe-
cific epigenetic changes that distinguish them from other tumours of
the same type.
Taken together, the above results strongly suggest that the cell of origin

of an individual tumour sample could be predicted from its mutation
pattern alone.Mutationprofiles of individual samples cluster according
to cancer type, and, consequently cell of origin (Fig. 4a).Wedeveloped a
straightforward predictor based on enrichment of epigenomic variables
fromasingle cell type among the top20variables selectedby theRandom
Forest analysis. This approach classified 88% of melanoma, colorectal,
liver, multiple myeloma, oesophageal and glioblastoma cancer genomes
tomelanocytes, colonic mucosa, liver, haematopoietic, stomachmucosa
andbrain tissues, respectively (Fig. 4b).Thus,mutational patterns contain
sufficient information for identifying the cell type of origin of a tumour.
Wepropose that sequencing theDNAof a tumourofunknownprimary
origin can allow the precise identification or categorization of the cell
type of origin of that tumour.
Traditionally, statistical prediction in cancer has made use of gene

expressiondata.We therefore constructed ananalogous predictorof cell
of origin usingRNAsequencingdata from167 glioblastomamultiforme
and 370 skin cutaneous melanoma samples24. This predictor achieved
accuracies of 78%and 57%on these cancer types, slightly lower than the
mutation-basedpredictor.Although these twoclassifiers are notdirectly
comparable, it is clear that genome sequence carries at least the same
amountof informationabout thecell oforiginasgeneexpressiondatadoes.
In conclusion, ourobservations suggest that cancermutationdensity

is linked to the epigenomicprofile in a highly cell-type-specificmanner.
Thus, DNA sequence is informative about the origin of an individual
tumour. The accumulating epigenomic data on human cell types opens
the perspective for accurate prediction of the cell of origin of a cancer
from its genome sequence.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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of origin prediction for individual cancer genomes: the number of cancer
samples that were assigned to the correct (solid colours) or incorrect (textures)
cell types of origin based on their mutation profile.
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METHODS
Data.Wedivided thehumangenomeinto1Mbregions, excludingregionsoverlapping
centromeres and telomeres, aswell as regionswhere the fractionofuniquelymappable
base pairs was lower than 0.92. We calculated the mean signal for different histone
modifications, DNase I hypersensitivity and replication timing in different cell types,
and used these 424 features to predict mutation density along the genome in eight
different cancer types (see below).
Wecalculatedmutationdensitybyobtainingdata for173 individualcancergenomes,

belonging to eight cancer types: melanoma (25 genomes)11, lung adenocarcinoma
(24genomes)13, lung squamous cell carcinoma (12 genomes)18, oesophageal adeno-
carcinoma (9 genomes)17, liver (64 genomes)14, multiple myeloma (23 genomes)12,
colorectal cancer15 (CRC, 9 genomes) and glioblastoma (7 genomes)16. The whole
genome of the COLO-829 cell line has been sequenced by the Sanger Institute. The
COLO-829 cell line was derived from metastatic tissue. The liver cancers were se-
quenced by the National Cancer Center Research Institute in Japan. The mutation
lists for the COLO829 cell line and liver cancer that we used in this study can be
found at (http://dcc.icgc.org/repository/legacy_data_releases/version_07/) under
the folders Malignant_Melanoma-WTSI-UK (COLO-829) and Liver_Cancer-NCC-
JP. The rest of the genomes were sequenced and analysed by the Broad Institute and
called using MuTect25 (http://www.broadinstitute.org/cancer/cga/mutect).
For eachcancer typewe counted theoverall number ofmutations inall individual

cancer genomes belonging to that cancer type. We also determined the mutation
densities for all possible types ofmutations ineachcancer types by countingdifferent
types ofmutations in 1-Mbwindows andnormalizing for the sequence composition
of each window.
Wedownloadeddata for 7 different histonemodifications andDNase I hypersen-

sitivity fromEpigenomicsRoadmap9andENCODE8 (ExtendedDataFig. 1). Epigeno-
mic data are available from the NCBI via the GEO series GSE18927 for University
of Washington Human Reference Epigenome Mapping Project at (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc5GSE18927).Dataused in this study can also
be viewed via multiple browsers outlined at the (http://roadmapepigenomics.org/)
website.
Fetal tissues were obtained from morphologically normal fetuses by the Birth

Defects Research Laboratory in the Department of Paediatrics at the University of
Washington, collectedunderanIRB-approvedprotocol.Bloodcell subsetswere collect-
ed from fully consenting, normal donors at the Cellular Therapy Laboratory and
cGMP Cell Processing Facility under the direction of Shelly Heimfeld at the Fred
Hutchinson Cancer Research Center with IRB-approval.
For histone modifications we combined reads for all samples belonging to one

cell type and calculatedRPKMvalues for 1-Mbwindows along the genome.We also
calculated the average number of DNase I hypersensitivity peaks overlapping 1-Mb
windows across all samples belonging to a certain cell type. We used BEDOPS26 to
map reads and DHS peaks to intervals.
We obtained data for four different Repli-seq experiments from the ENCODE

project (Extended Data Fig. 1) and determined replication timing as the average
value of wavelet-smoothed signal in each 1-Mb window. Lymphoblastoid cell line
replication timewas obtained from ref. 27 and averaged over 1-Mbwindows along
the genome.
To control for the effect of sequence features onmutationdensity, for each 1-Mb

windowwealso calculatedGCcontent, the number ofCpG,GpC, andApTdinucle-
otides, and fraction of the window overlapping coding regions, known genes and
CpG islands.
Tocontrol for the effect of expressiononmutationdensitywedownloadedmRNA-

seq data from the Epigenomics Roadmap9, for 38 different cell types for which
expression data was available (Extended Data Table 1).We combined reads for all
samples belonging to one cell type and calculated reads per kilobase per million
mapped reads (RPKM)values for the set of all protein coding exons in 1-Mb
windows, the set of all protein coding and lncRNA exons in 1-Mb windows, the
maximally expressedgene in a1-Mbwindowornon-genic regions in1-Mbwindows.
Random Forest regression. Random Forest is a non-parametric machine learn-
ingmethod that combines the output of an ensemble of regression trees to predict
the value of a continuous response variable28. The use of multiple regression trees
reduces the risk of over-fitting and makes the method robust to outliers and noise
in the input data. For each regression tree, a training set ofnobservations are drawn,
with replacement, fromthedata set. The remainingdata (out-of-bagdata) constitutes
the test set for this tree, and is used to compute the mean squared prediction error
of the tree. The prediction for each observation is made by taking the average of
predictions over all trees for which the observationwas part of the out-of-bag data.
Random Forest provides an internal measure of the importance of different

predictor variables, based on out-of-bag data. The mean squared error calculated
on the out-of-bag data is recorded in every tree grown in the forest. The values of
all thepredictor variables are thenrandomlypermuted inall the out-of-bagobserva-
tions and the mean squared error is computed again. The difference between the

two errors is averaged over all the trees, and normalized by the standard error,
representing the raw importance score for each variable.
We used Random Forest with 1,000 trees to predict mutation densities in 1Mb

non-overlapping windows in the eight different cancer types using 424 predictor
variables (epigenetic features andreplication timing;ExtendedDataFig. 1).Wedivided
the data into ten non-overlapping sets and predicted the number of mutations in
eachcancer type using tenfold cross-validation. For each sample, the predicted value
corresponded to the predicted mutation density when this observation was part of
the test set.WeusedPearsonproduct-moment correlation to interpret theprediction
accuracy. The fraction of variance explained by each model was calculated as the
Pearson correlation coefficient squared.
Controlling for the effect of sequence features and expression on prediction
accuracy.We created different subsets of features corresponding to chromatin (his-
tone modifications and DNase hypersensitivity, 419 features), replication timing (5
features), sequence (7 features) and expression (38 features).We thenusedRandom
Forest regression with tenfold cross-validation to predict mutation density in dif-
ferent cancers,where for eachcancer typewe traineddifferentmodels: on each subset
of features separately and on combinations of different subsets of features.
Variable importance analysis.Variable importancewascalculated foreachpredictor
variable in each cancer type by permuting the variable, that is, randomly shuffling
thedata values so that the relationshipbetween the response andpredictor variables
was destroyed.Thepercentof increase inmean squared error of predictionwas then
calculated. Since the variable importance can be influenced by both the correlation
and the scale of the variables, we calculated the empirical P value of variable impor-
tance measures by repeatedly permuting the response variable in Random Forest
models, in order to determine the distribution of measured importance values for
eachpredictor variable29. This procedurewas repeated 1,000 times, and the number
of times inwhich the importancemeasure in the original data setwas lower or equal
to the permuted importance measure was counted; this count represented the
P value, with a count of one corresponding to a significance level of P, 0.001.
Feature selection.We applied backward elimination to identify a minimal set of
predictors for each cancer type. Backward elimination is a ‘greedy’ algorithmwhich
finds the locally optimal subset of features, but does not guarantee finding the global
optimum. However, it is less computationally intensive than searching all possible
feature subsetswhen thenumberof features (p) is large (inour casep5424). Initially,
we trained a Random Forest with tenfold cross-validation on the complete set of
variables and determined the importance of all the variables in the model (the
importancewas calculated as themean importance of the variable across 10 rounds
of cross-validation). We then ranked the variables according to their importance
anddetermined the top 20 variables.We then sequentially trained 20models, remov-
ing the least important variable at each step, until only one predictor variable was left
for training.
Principal coordinate analysis.We used principal coordinate analysis to visualize
thedissimilarities inmutationdensity distributionsbetween individual cancer genomes.
Dissimilarity was calculated as 1 – Pearson correlation coefficient, for all possible
combinations of individual cancer genomes.
Prediction of tissue of origin for individual cancer genomes.For each individual
cancergenomewepredicted thedensityofmutationsusingRandomForest regression
with tenfold cross-validation.Weused the full set of features anddetermined the top
20 features according to the variable importance measure. We then calculated the
enrichment of each tissue type among the top 20 features using the hypergeometric
test and chose the tissue showing themost significant enrichment as themost likely
tissue of origin for the individual cancer genome.We then calculated the percentage
of individual cancerswhere theassigned tissue oforiginmatched thepredicted tissue
of origin.
Prediction of cell of origin using gene expression. For each individual cancer we
downloaded gene expressiondata fromTheCancerGenomeAtlas16 and calculated
the expression of the same genes in the 38 cell types for whichmRNA-seq data was
available from theEpigenomicsRoadmap (ExtendedDataTable 1). For each cancer
we trained a Random Forest regression model in which the gene expression values
in cancerwere used as the response variable and the gene expression in normal cells
as the predictors. We identified the predictor variable, which showed the highest
value of variable importance in themodel and assigned the corresponding cell type
as cell of origin of the cancer.
Sample size. No statistical methods were used to predetermine sample size.

25. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nature Biotechnol. 31, 213–219 (2013).

26. Neph, S. et al. BEDOPS: high-performance genomic feature operations.
Bioinformatics 28, 1919–1920 (2012).

27. Koren,A.etal.DifferentialRelationshipofDNAreplicationtiming todifferent forms
of human mutation and variation. Am. J. Hum. Genet. 91, 1033–1040 (2012).

28. Breiman, L. Random Forests.Mach. Learn. 45, 5–32 (2001).
29. Altmann, A., Tolosi, L., Sander, O. & Lengauer, T. Permutation importance: a

corrected feature importance measure. Bioinformatics 26, 1340–1347 (2010).

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2015

http://dcc.icgc.org/repository/legacy_data_releases/version_07
http://www.broadinstitute.org/cancer/cga/mutect
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18927
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18927
http://roadmapepigenomics.org


Extended Data Figure 1 | Correlation of mutation density measured in different cancer types.
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Extended Data Figure 2 | Chromatin features and replication data used in the models.
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Extended Data Figure 3 | Scatter plots of the measured number of somatic mutations perMb in different cancer genomes versus the number of mutations
predicted by the Random Forest algorithm. The training set consisted of 10% of the data, the remaining 90% was used to test the predictions.
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Extended Data Figure 4 | Prediction accuracy of the models trained on
individual cancers as a function of the number of mutations. The red line
represents the prediction accuracy of the model used to predict the mutation

density of samples pooled by cancer type (sum of all mutations in individual
cancers of a certain cancer type). N – number of individual cancers per
cancer type.
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Extended Data Figure 5 | Sampling variance. Red, the squared correlation
coefficient (R2) between the observed mutational profile and the profiles
predicted by Random Forest. Blue, the maximal attainable variance explained,
calculated as the average correlation coefficient squared (R2) between the

mutational profiles predicted by Random Forest and 100 simulated mutational
profiles modelled as a Poisson distribution with the mean predicted by
epigenomic features. N – number of individual cancers per cancer type.
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Extended Data Figure 6 | Frequency of different types of mutations in different cancer types.
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Extended Data Figure 7 | Prediction accuracy of models obtained using
different subsets of predictor variables. a, Comparison of the prediction
accuracy obtained using the full set of chromatin features, 38 chromatin
features measured in cell types for which expression data was available, and
expression data. Expression in 1-Mbwindows was calculated usingmRNA-seq
reads mapping to either protein coding exons, protein coding and lncRNA
exons, maximally expressed gene or non-genic regions, and normalized by the
cumulative length of each of these regions, respectively. Bars represent the
mean prediction accuracy; error bars represent standard errors of the mean

prediction accuracy estimated using tenfold cross-validation. b, Distribution of
the percent of variance explained in 10 folds of cross-validation (n5 10) for
models trained on chromatin, replication, expression (non-genic mRNA-seq)
or sequence features, or a combination of these subsets of features. Models
trained on chromatin features were compared to all other models for a certain
cancer type (Wilcoxon rank-sum test). Significant differences, Benjamini–
Hochberg-corrected: **P, 0.01, ***P, 0.001. Box plots, band inside the box,
median; box, first and third quartiles; whiskers, most extreme values within
1.53 inter-quartile range from the box; points, outliers.
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Extended Data Figure 8 | Feature selection by using the backward
eliminationprocedure. For each cancer type, variables are ordered from top to
bottom by decreasing importance. Each bar represents the fraction of
variance explained by the model using the corresponding bar and all bars
above it. Error bars represent the standard error of themean variance explained

by the model, estimated using tenfold cross-validation. The red line
indicates the cutoff needed to achieve the prediction accuracy of the full model
– 1 s.e.m. For each cancer type, featuresmeasured in related cell lines are shown
in red.
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Extended Data Figure 9 | The number of mutations per megabase in
COLO829 cell line versus DHS density inmelanoma cell lines, melanocytes,
DHSs specific to melanomas and DHSs specific to melanocytes.
Correlation is calculated using the Spearman’s rank correlation coefficient.
DHS density in melanoma cell lines corresponds to DHSs measured in 11

melanoma cell lines. DHSs specific to melanomas correspond to DHSs
observed in melanomas but not observed in melanocytes. DHSs specific to
melanocytes correspond to DHSs observed in melanocytes but not observed in
melanomas.
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Extended Data Table 1 | Cell types for which mRNA-seq data was downloaded from Epigenomics Roadmap
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