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Allelic differences between the two homologous chromosomes can
affect the propensity of inheritance in humans; however, the extent
of suchdifferences in thehumangenomehas yet tobe fully explored.
Here we delineate allelic chromatin modifications and transcrip-
tomes amongabroadset ofhuman tissues, enabledbya chromosome-
spanning haplotype reconstruction strategy1. The resulting large
collection of haplotype-resolved epigenomicmaps reveals extensive
allelic biases in both chromatin state and transcription, which show
considerable variation across tissues and between individuals, and
allowus to investigate cis-regulatory relationships betweengenes and
their control sequences. Analyses of histonemodificationmaps also
uncover intriguing characteristics of cis-regulatory elements and
tissue-restricted activities of repetitive elements. The rich data sets
described here will enhance our understanding of the mechanisms
bywhich cis-regulatory elements control gene expressionprograms.
Weperformed chromatin immunoprecipitation followedby sequenc-

ing (ChIP-seq) to generate extensive data sets profiling 6 histonemod-
ifications across 16 human tissue types from four individual donors
(181 data sets). In combination with previously published data sets2,3,
we conducted in-depth analyses across 28 cell/tissue types, covering a
wide spectrumofdevelopmental states, including embryonic stemcells,
early embryonic lineages and somatic primary tissue types representing
all three germ layers (Fig. 1a) (protocols received approval from IRB/
ESCROandMid-AmericanTransplant Services, and research consent
was obtained from families). Themodifications demarcate active pro-
moters (histone H3 lysine 4 trimethylation (H3K4me3) andH3 lysine
27 acetylation (H3K27ac)), active enhancers (H3 lysine 4monomethy-
lation (H3K4me1) and H3K27ac), transcribed gene bodies (H3 lysine
36 trimethylation (H3K36me3)) and silenced regions (H3K27 or H3
lysine9 trimethylation (H3K27me3andH3K9me3, respectively))4,5.We
systematically identified cis-regulatory elements by employing a random-
forest-basedalgorithm(RFECS)2,6, predictinga total of 292,495 enhancers
(consisting of 175,912 strong enhancers with high H3K27ac enrich-
ment) across representative samples of all 28 tissues types (Supplemen-
taryTable 1).Weadditionally identified 24,462 highly active promoters
with strong H3K4me3 enrichment (see Supplementary Table 2). Sub-
sequently, we defined tissue-restricted promoters (n5 10,396) and
enhancers (n5 115,222) (ExtendedData Fig. 1a). Consistentwith pre-
vious studies7–9, enhancers appearmore tissue-restricted thanpromoters
and cluster along developmental lineages (Extended Data Fig. 1a, b).
Moreover, tissue-restricted enhancers were enriched for putative bind-
ing motifs of particular transcription factors known to be important

in maintaining the cell/
tissue type’s identity and
function10–15 (Extended
Data Fig. 2).
Recent studies showed

that particular repetitive elements, such as endogenous retroviruses
(ERVs), couldparticipate in transcriptional regulationduringmamma-
liandevelopment16–18.Given the representationof samples available, we
systematically examined histone modifications at different classes of
ERVs.Whilemost are inactive, subsets, especially class I ERVs (ERV-I),
are marked by H3K27ac in a tissue-restricted manner (Extended Data
Fig. 3a and b). For instance, HERV-H element activities are restricted
to human embryonic stem cells (hESCs) (Extended Data Fig. 3c, d).
Furthermore, someERVscarriedmarksof activepromotersor enhancers
(ExtendedData Fig. 3d, e).We also observed that the LTR12C subfamily
had substantial H3K27ac enrichment across different tissues (Extended
Data Fig. 3e, f). Notably, the individual members appeared to be tissue
restricted, suggesting that although the subfamily can be classified as
non-tissue restrictively active, individual LTR12C elementswere active
only in distinct tissue/cell types (ExtendedData Fig. 3e). Taken together,
thedata illustrate that humanERVsdisplayprecisely controlledpatterns
of activity in distinct tissues.
Intriguingly, 15.2% (n5 3,717) of strong promoters were also pre-

dicted as enhancers in other tissues, analogous to observations inmice,
where intragenic enhancers act aspromoters toproduce cell-type-specific
transcripts19. These sites possessed histone modification signatures of
active enhancers in some tissue/cell types butwere enrichedwith active
promoter marks in others. We termed these sequences cis-regulatory
elementswithdynamic signatures (cREDS). For example, 1,321 cREDS
enhancers showed enrichment ofH3K27ac andH3K4me1anda striking
depletion ofH3K4me3 in lung (Fig. 1b, c and Supplementary Table 3).
However, the signature shifted to that of activepromoters inother tissues
(Fig. 1b, c). cREDS are also found in other cell/tissue types (Extended
Data Fig. 4a). To determine whether cREDS have dual functions, we
selecteda subset of promoter-marked elements andvalidated their func-
tionwith a luciferase reporter assay in hESCs. Themajority (7 out of 10)
showed promoter activity (Extended Data Fig. 4b). Similarly, 10 of 11
selected cREDS with enhancer signatures in hESCs also functioned as
enhancers (Extended Data Fig. 4c). Additionally, subsets of enhancers
previously validated in transgenic mice also possessed dynamic signa-
tures (Extended Data Fig. 5)20. Furthermore, we selected two cREDS,
predicted as enhancers in the left heart ventricle, with significant cap
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analysis of gene expression (CAGE) signal21, typical of active promoters
(Extended Data Fig. 6a, b), and found that they possess heart-restricted
enhancer activities in an in vivo zebrafish reporter assay (ExtendedData
Fig. 6c). Consistent with reporter activities, transcriptional properties
(RNA-seq values based on reads per kilobase permillionmapped reads
(RPKM) within61 kb of the elements) of cREDS enhancers and pro-
moters are similar tonon-cREDSenhancers andpromoters, respectively
(Fig. 1d). Interestingly, when comparing isoform dynamics across H1
and IMR-90 RNA-seq data sets22 with cREDS identified between these
two cell types we discovered that a subset of cREDS promoters was
accompanied by creation of new transcripts and/or alternative exon
usage (n5 99) (Fig. 1e), revealing a possible function whereby cREDS
influence cell/tissue-specific transcript variants. Taken together, these
data show that cREDS can potentially function as both promoters and
enhancers in distinct cell types and fine-tune transcriptomes.
Reasoning that global analysis of allelic histonemodificationandgene

expression patterns would elucidate mechanisms of long-range gene
regulation by distal cis-regulatory elements, we re-analysed RNA-seq
andChIP-seq data sets by considering haplotype information. For this
purpose, we applied HaploSeq1, which integrated genome sequencing
with high-throughput chromatin conformation capture (Hi-C) data
sets to derive chromosome-spanning haplotypes (see Supplementary
Information). For four different tissuedonors,we generatedhaplotypes
spanning entire chromosomeswith 99.5% completeness on average (the
coverageof haplotype-resolved genomic regions) and average resolution
(the coverage of phased heterozygous SNPs) ranging from 78% to 89%
(Fig. 2a and SupplementaryTables 4 and 5). The accuracy of haplotype
predictionswas validatedby the concordancewith SNPs residing in the
same paired-end sequencing reads. The concordance rates were 99.7%
and 98.4% for H3K27ac ChIP-seq reads (described below) and RNA-
seq reads, respectively, indicating high accuracy. We then re-analysed
36mRNA-seqdata sets from18 tissues (including16 tissuesnotedabove
with the addition of bladder and adipose tissue) and 187ChIP-seq data

sets for 6 histonemodifications (Supplementary Table 6), from up to 4
individual donors, in a haplotype-resolved context.
Althoughwidespread allelic imbalances in gene expressionhad been

previously noted7,23–25, it remains unclear whether this phenomenon is
consistent across distinct tissues and individuals, and the underlying
mechanism remains undefined. To address the first point, we defined
geneswith allelically biased expression bymeans ofmapping theRNA-
seq reads in each tissue sample in a haplotype-resolved manner. We
observed extensive allelically biased gene expression, ranging from 4%
to 13% of all informative genes (.10 allelic read counts) in each tissue
sample (falsediscovery rate (FDR)5 5%,ExtendedDataFig. 7a, b).Com-
paratively, the proportion of allelically biased genes in individual tissue
donors ranged from 6% to 23% of all informative genes, giving a com-
bined total of 2,570 allelically biased genes (Fig. 2b and Supplementary
Table 7). As a control, known imprinted genes (n5 15) showed com-
mon allelic biases across multiple samples (Fig. 2c) and donors (Ex-
tended Data Fig. 7c). Our data sets, representing the only collection of
haplotype-resolved transcriptomes across an array of tissues frommul-
tiple individuals, allowed us to characterize allelic transcription across
tissues and donors.Whilemost genes with allelically biased expression
demonstrate bias inmultiple samples, approximately 75%exhibit stati-
stically significantdonor-specific bias (Fig. 2d andExtendedDataFig. 7d).
This suggests a connectionbetween sequence differences of individuals
and allelically biased gene expression. In support of this model, genes
frequentlydemonstrate consistent directionof allelic bias acrossmultiple
tissues of a givendonor (Fig. 2e andExtendedDataFig. 7e). Interestingly,
allelically biased geneswere not restricted to the same tissue type across
distinct donors. Rather, theyweremostly specific to individual samples
derived from each donor (Fig. 2f and Extended Data Fig. 7f), possibly
resulting from differential levels of tissue-restricted transcription fac-
tors among different tissue samples.
As natural genetic variations can affect enhancer selection and func-

tion in mammalian cells26, we hypothesized that polymorphisms at
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Figure 1 | Epigenome profiles of tissues reveal cREDSwith dynamic histone
modification signatures. a, Schematic of the cell/tissue types profiled and their
progression along developmental lineages. Samples include embryonic stem
cells (H1), early embryonic lineages (mesendoderm cells (MES), neural
progenitor cells (NPC), trophoblast-like cells (TRO) and mesenchymal stem
cells (MSC)) and somatic primary tissues, representative of all three germ layers
(ectoderm: hippocampus (HIP), anterior caudate (AC), cingulate gyrus (CG),
inferior temporal lobe (ITL) and mid-frontal lobe (MFL); endoderm: lung
(LG), small bowel (SB), thymus (TH), sigmoid colon (SG), pancreas (PA), liver
(LIV) and IMR-90 fibroblasts; mesoderm: duodenum smooth muscle (DUO),
spleen (SX), psoas (PO), gastric tissue (GA), right heart ventricle (RV), right
heart atrium (RA), left heart ventricle (LV), aorta (AO), ovary (OV) and

adrenal gland (AD)). b, Heat maps show H3K27ac, H3K4me3 and H3K4me1
enrichment (input normalized reads per kilobase per million mapped reads
(RPKM)) at predicted lung enhancers (n5 1,321), which are defined as
promoters in other tissues, across all 28 samples. The red box highlights the
signatures in lung. c, A UCSC genome browser snapshot of a region on
chromosome 20, showing the chromatin states of a cREDS element (grey
shading) predicted as a promoter in psoas and an enhancer in lung. d, A box-
plot of RNA-seq signals (RPKM) overlapping61 kb of cREDS enhancers,
cREDS promoters, non-cREDS control enhancers and non-cREDS control
promoters.***P, 103 102142,Wilcoxon test. e, RNA-seq and chromatin states
of a cREDS element (grey shading) is shown for a region on chromosome 17 in
H1 and IMR-90. Arrow indicates an alternative exon incorporated in IMR-90.
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cis-regulatory sequences underlie thewidespread allelic transcriptional
biases.We thus exploited theunique resource of187haplotype-resolved
ChIP-seqdata sets to analyse the stateof cis-regulatory elements.We iden-
tified allelically biasedmarks at promoter regions (H3K27ac,H3K4me1,
H3K4me3, H3K27me3 and H3K9me3) and transcribed gene bodies

(H3K36me3) (seeSupplementary Information). In supportofourhypoth-
esis, the allelic biases of gene expression strongly agreedwith chromatin
states of sequences at or near the genes (Fig. 3a, b and Extended Data
Fig. 8a).
Furthermore, if allelic imbalances of enhancer activities indeed con-

tribute to allelically biased gene expression, we expect that chromatin
states at enhancerswill be concordantwith the expressionof their targets.
Therefore, we generated additional H3K27ac ChIP-seq data sets with
deeper coverage and longer sequencing reads (for better delineation of
alleles) for 14 of the previously analysed tissue samples and an addi-
tional 6 samples from independent donors (Supplementary Table 7).
Of the informative enhancers (with.10polymorphism-bearing sequence
reads), 11.6% (n5 11,714, FDR5 1%) showed significant allelically
biasedH3K27ac enrichment in any tissue types (Fig. 3c andSupplemen-
tary Table 8). H3K27ac biases were validated by allele-specific ChIP-
qPCR (ExtendedData Fig. 8b). Interestingly, identical genotypes often
yielded the samedirectionof biases in allelic enhancer activities (Fig. 3d).
Wefurther testedwhether sequencevariationsare systematically associated
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Figure 2 | Widespread, individual-specific allelic bias in gene expression.
a, Genome browser snapshots illustrate completeness and resolution of
haplotypes resolved in donor 4. The y axis indicates the number of variants
within 100-kb windows. The density of all (blue), phased (orange) and
unphased (grey) variants across chromosome 1 is shown. b, Proportion of
genes with allelically biased expression among informative genes and the
number of tissue samples derived from each donor (ntissue) are described.
c, Box-plot illustrates occurrence of imprinted (n5 15) and other
allelically biased genes, excluding pseudogenes (n5 2,334) across samples.
***P, 9.93 1025, Kolmogorov–Smirnov (KS) test. d, Including only tissues
with two or three equivalent samples derived from distinct donors
(ntissue5 10), genes with allelic imbalances were defined as common between
individuals (consistent bias among same tissue type frommultiple donors) or as
individual-restricted. Random control represents average from randomly
selected samples (10,000 iterations). Abbreviations are defined in the legend to
Fig. 1. e, Fold change of gene expressions between alleles (parental allele 1 (P1)
and 2 (P2)) in adrenal gland from donor 2 (x axis) is compared to all other
tissues from donor 2 (y axis). f, A histogram illustrates the proportions of
allelically expressed genes in donor 1 (n5 1,375) defined in various numbers of
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with allelic H3K27ac, which reflects enhancer activities27. Indeed,
H3K27acbiaseswere strongly correlatedwith specific genotypes,whereby
given identical genotypes, this histone modification was biased to the
same alleles, both across tissue types and individuals (Fig. 3d–f and
ExtendedData Fig. 9a). Furthering this finding, we analysed previously
generated data sets from lymphoblastoid cell lines28 and found similar
significant correlationof genotypeandmolecular phenotypeofH3K27ac

enrichment (ExtendedData Fig. 9b). Taken together, these data reveal
that extensive allelic imbalance events are associated with sequence
variants in cis-regulatory elements.
We discovered that allelic enhancers resided in significantly closer

proximity to genes with allelically biased expression, as compared to
non-allelic enhancers (Fig. 4a, b). We also observed examples where
distinct tissues from the samedonor showed similar allelic biases of gene
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gene expression. a, Average distance of allelic (5%
FDR) and non-allelic enhancers to the closest
allelically expressed gene is significantly different
(n5 3,829, P, 2.23 10216, KS test). b, Genome
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pairs5 50%). e, Overlap between eQTLs30 and
allelic enhancers; testable enhancers or random
control regions are shown. Error bars represent
standard deviations. Testable enhancers and
random control regions were generated 10,000
times with the same numbers as allelic enhancers.
***P, 1031025.
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expression andH3K27ac at enhancers (left ventricle and right ventricle
from donor 3); however, the same tissue type derived from a different
donor (left ventricle fromdonor1) yieldednoconsistentpatterns (Fig. 4b),
supporting thehypothesis that allelicallybiasedgene expression isdriven
by individual-specific genetic variation in enhancers. Indeed, within
close proximity, the concordance between allelic enhancers and gene
expression is significantly higher than permutated control enhancer/
gene sets (Fig. 4c). Remarkably, 56% of allelic enhancer–gene pairs are
greater than 300 kb apart (Extended Data Fig. 10a, b), the delineation
of which was enabled by whole-chromosome-spanning haplotypes.
Similar to genes,many allelically biased enhancers are tissue restricted

(ExtendedDataFig. 10c).We reasoned that gene expressionbiases could
result from tissue-restricted enhancer activities, evidenced by significant
correlation between allelic enhancers and allelically expressed genes
(Fig. 4d). Allelic enhancers also significantly overlapped with expres-
sion quantitative trait loci (eQTLs) (Fig. 4e), DNase I hypersensi-
tivity QTLs and H3K27ac QTLs (Extended Data Fig. 10d), defined
independently28–30, corroborating the functional roles of identified allelic
enhancers on gene regulation. Taken together, these observations sup-
port a model whereby allelic biases of cis-regulatory element activities
could be responsible for allelic gene expression.
Finally, to elucidate further themechanismbywhich allelically biased

enhancer activities arise, we examined single nucleotidepolymorphisms
(SNPs) that potentially disrupt or weaken transcription factor binding
motifs.We calculated changes inmotif score between alleles (motif dis-
ruption score) at allelic enhancers anddiscovered133 transcription factor
motifs showing significant concordance between allelic reduction of
enhancer activities and transcription factormotif disruption (Fig. 5a, b)
(FDR5 10%, Supplementary Table 9).Moreover, genes with allelically
biased expression were concordant with enhancer motif disruptions
within close proximity (,20 kb) or displaying strongHi-C interactions
at longer distances (.20 kb) (Fig. 5c and Supplementary Information).
Our results therefore suggest that genetic variations are probably respon-
sible for allelic enhancer activities and consequently allelically biased
gene expression.
By generating chromosome-spanning haplotypes, we carried out a

comprehensive survey of allelic chromatin state and gene expression.
We found evidence for extensiveallelically biasedgene expression,which
is connected to change in chromatin states at cis-regulatory elements,
probably resulting from transcription factor binding disruption by
sequence variations. These observationsmirror findings inmice where
allelic biases of cis-regulatory element activities could be responsible for
allelic gene expression26, and demonstrate that such a phenomenon is
probably widespread in the human genome. These observations shed
light on the importance of considering genetic variants in understand-
ing individual-specific gene regulation. Analyses of haplotype-resolved
transcriptomes and epigenomes in additional individuals and tissues
should further illuminate the role of sequence variations in defining
individual-specific transcriptional programs and phenotypes.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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asterisks. c, Clustering of tissues by promoters’ histone acetylation status shows
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Extended Data Figure 2 | Tissue-restricted enhancers are enriched for
transcription factor motifs important for cell identity and/or function.
Significantly enriched motifs (P, 103 10210) across all 28 tissues are divided
into 29 clusters (method described in Supplementary Information). An
overall P value is generated for the enrichment of each tissue for each cluster.
The figure illustrates –log(P value) of (a) pancreas, (b) anterior caudate and (c)

liver-restricted enhancer motif enrichment for the various clusters. For ease of
visualization, any cluster with P values greater than 0.05 is denoted 0. Red
highlighted text refers to a subset of motifs for transcription factors with
literature support (see Supplementary Information) to have function in (a) the
pancreas, (b) the brain and (c) the liver.
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Extended Data Figure 3 | Endogenous retroviruses (ERVs) are enriched for
active cis-regulatory element marks in a tissue-restricted fashion. a, A
clustered heat map showing theH3K27ac enrichment (RPKM) of all mappable
elements of the three classes of ERVs. b, Distribution of the Shannon entropy of
H3K27ac across enhancers, promoters and three classes of ERVs is shown
as a density curve, demonstrating that H3K27ac enrichment of ERVs is more
tissue-restricted than promoters and slightly less than enhancers. c, Box-plots
illustrating the H3K27ac enrichment of 127 mappable members of the
HERV-H subfamily across all tissue/cell types. The enrichment in H1 hESCs is
significantly higher than all other cell/tissues types (P, 1.43 1029, Wilcoxon

test). d, UCSC genome browser snapshots showing example of an HERV-H
element harbouring H1-restricted active promoter marks, corresponding
RNA-seq signal and H3K36me3 enrichment. Notably, this particular element
has been annotated in Refseq as the ES cell related gene (ESRG), a human-
specific long non-coding RNA gene. e, UCSC genome browser snapshots
showing example of a LTR12C element harbouring TRO-restricted active
enhancer chromatin marks. f, A matrix illustrating the average H3K27ac
enrichment for subfamilies of class I ERVs across all cell and tissue types.
LTR12C subfamily (green arrow) shows enrichment of H3K27ac across many
distinct cell types and tissues.

LETTER RESEARCH



H3K27ac H3K4me1

Predicted MES enhancers overlapping with TSS in other tissues  (n= 650)

5.0-5.0 0.0
Input normalized RPKM

H3K4me3

PO

LIV

AC

MES

H1

TRO

NPC

TH

LG

SG

IMR-90

MSC

DUO

SB

EG

MFL

SX

RA

AD

PA

CG

AO

ITL

HIP

GA

OV

RV

LV

Lu
ci

fe
ra

se
 a

ct
iv

ity
 (

fo
ld

 o
ve

r 
ne

ga
tiv

e)

Luciferase reporter gene polyA SV40 enhancer

5’ 3’

promoter insertion site

pGL3-Enhancer vector system

0

2

4

6

8

10

12

Promoter

1 2 3 4 5 Neg6 7 8 9 10 Lu
ci

fe
ra

se
 a

ct
iv

ity
 (

fo
ld

 o
ve

r 
ne

ga
tiv

e)

Luciferase reporter gene polyASV40 minimal promoter

5’ 3’

enhancer insertion site

pGL3-Promoter vector system

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Enhancer

1 2 3 4 5 Neg6 7 8 9 10 11

a

b c

Extended Data Figure 4 | cREDS are enriched with dynamic histone mark
signatures in different tissues and have putative cis-regulatory functions.
a, Heatmaps showing the enrichment (RPKM) of theH3K27ac, H3K4me3 and
H3K4me1 at MES-restricted enhancers (n5 650), which are predicted as
promoters in other tissues, across all 28 samples. The red box highlights the
histone modifications in MES cells. b, A schematic of the pGL3-enhancer
vector used in these luciferase-reporter assays (top) and the activity of 10
selected cREDS with promoter signatures and a negative control region cloned

59 to the reporter gene after transfection into H1 hESCs (bottom). Luciferase
activity of each region is normalized to the average activity of the negative
controls. c, A schematic of the pGL3 promoter vector used in these luciferase-
reporter assays (top) and the activity of 11 selected cREDS with enhancer
signatures and a negative control region cloned 39 to the reporter gene after
transfection into H1 hESCs (bottom). Luciferase activity of each region is
normalized to averaged activity of negative control regions. Error bars reflect
standard deviation between three technical replicates.
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along with histone modification patterns in representative tissues (adapted
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Extended Data Figure 6 | cREDS show enrichment of CAGE signal and
putative enhancer functions in a zebrafish reporter assay. a, UCSC genome
browser screen shots show the two cREDS elements (grey shading) harbouring
enhancer and promoter signatures in distinct tissue types. When compared
to CAGE data sets from the FANTOM5 project, these elements show
substantial overlap with transcript signals (red and blue signals indicate
CAGE signal on the forward and reverse orientation, respectively). b, Selected
cREDS (same elements as above) with enhancer marks in left ventricle show

heart-restricted enhancer activity, as indicated by GFP expression, in 3 days
post-fertilization (3 dpf) zebrafish larvae. In parallel, pT2MX negative control
did not show any GFP expression. White arrow indicates location of the 3 dpf
zebrafish heart. For enhancer 1, 13 out of the 38 surviving embryos showed
similar patterns. For enhancer 2, 18 out of the 35 surviving embryos showed
similar patterns. None of the 30 surviving embryos, injected with the control
vector, showed any appreciable GFP signal in the heart. Scale bar, 50mm.
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Extended Data Figure 7 | Identification of widespread allelically expressed
genes. a, Fraction of genes with allelically biased expression in each sample.
y axis indicates number of samples and x axis indicates fraction of allelically
biased genes among informative genes (more than 10 SNP-containing short
reads). b, Distribution of fold change of allelically biased genes between P1
and P2 alleles. c, The occurrence of allelically biased imprinted and other genes
is shown. x axis refers to the number of individual donors where corresponding
allelically expressed genes are commonly detected. d, A density plot
showing the fraction of sample-restricted genes with allelically biased
expression (grey). Three tissue samples were randomly selected and sample-
restricted allelically expressed genes were defined, which includes random
variance effect. The random selection was repeated 10,000 times. The shaded
blue box indicates the range of fractions of individual-restricted allele-biased
genes in all analysed tissue types (n5 10). The fraction of sample-restricted

allelically biased genes is lower than individual-restricted allele-biased genes in
Fig. 2e. e, Fold change of allele-biased gene expression between two alleles is
shown as scatter plot. x axis is for the fold changes in one randomly selected
tissue in each donor and y axis is for the fold changes in all other remaining
tissues in the corresponding donor. Allelic bias in one tissue is highly correlated
with allelic bias in other tissues in the same individual. f, A histogram illustrates
the proportions of allelically expressed genes in donor 2 (left) and 3 (right)
defined in various numbers of tissues. The fraction of all testable genes or
allelically expressed genes (y axis) is calculated for the number of tissues where
they are called as active (x axis). The results indicate that the majority of
allelically biased genes, as opposed to testable genes, are restricted to one or two
tissue samples. KS test was performed between allele-biased genes and testable
genes (P, 2.23 10216).
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Extended Data Figure 8 | Allele-biased chromatin states. a, Box-plots
illustrating haplotype-resolvedChIP-seq signal enrichment on the two alleles at
promoter regions. The P1 or P2 allele-biased promoter regions were defined by
H3K27ac signals and then H3K4m1, H3K4me3 and H3K9me3 signals were
presented for the corresponding promoter regions. All chromatin states are
consistent according to the allele-biased H3K27ac patterns. KS test was

performed for P value calculation. b, Allelically biased enhancers were tested in
thymus from donor 1 and pancreas from donors 2 and 3. H3K27ac enrichment
was tested by allele-specific ChIP-qPCR. Two control enhancers were
included and showed to have no allelic biases in thymus or pancreas from
donor 2 (top right and bottom left, respectively).
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Extended Data Figure 9 | Putative enhancers with identical genotypes in
different individuals exhibit similar biases in histone acetylation. a, Scatter
plots of P1 allele-biased enhancer activities for pairwise comparison of
allele-biased enhancers in donor 1 (n5 85) and donor 2 (n5 4,427). x and

y axes indicate P1 allele bias. b, Scatter plot of reference allele bias of enhancer
activities for pairwise comparison of allele-biased enhancers in all tissues
from all three donors and lymphoblastoid data sets obtained from a previous
study28 (n5 309).
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Extended Data Figure 10 | Analyses of concordant allelically biased
gene–enhancer pairs. a, Frequency of allelically expressed genes according to
the distance between concordantly allele-biased enhancer–gene pairs. Blue bars
represent data obtained from whole-chromosome-spanning haplotype
blocks while green bars represent data obtained from simulated 300-kb
haplotype blocks. 56% of enhancer–gene pairs are more than 300 kb apart.
b, Accumulation curve showing fraction of allelically biased genes that have at
least one concordantly allelic enhancer within a given distance (x axis). Up to

83% of allelically expressed genes are within 2Mb of a concordantly biased
allelic enhancer. c, The frequency of allele-biased enhancers in donors 1, 2
and 3. y axis indicates fraction of enhancers and x axis indicates frequency of
allelically biased enhancers. KS test was performed between allele-biased
enhancers and testable enhancers. d, Bar plots presenting the number of
enhancers overlapping with DHS QTLs and H3K27ac QTLs for allelic
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