Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013)

Subjects

Abstract

The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae1,2,3. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, 7Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. 7Be decays to form 7Li within a short time (half-life of 53.22 days4). The 7Be was created during the nova explosion via the alpha-capture reaction 3He(α,γ)7Be (ref. 5). This result supports the theoretical prediction that a significant amount of 7Li is produced in classical nova explosions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blue-shifted absorption line systems in the spectrum of V339 Del obtained at day +47.
Figure 2: Time variations of the blue-shifted absorption line systems from day +38 to day +52.

Similar content being viewed by others

References

  1. Romano, D., Matteucci, F., Molaro, P. & Bonifacio, P. The galactic lithium evolution revisited. Astron. Astrophys. 352, 117–128 (1999)

    CAS  ADS  Google Scholar 

  2. Romano, D., Matteucci, F., Ventura, P. & D'Antona, F. The stellar origin of 7Li. Do AGB stars contribute a substantial fraction of the local Galactic lithium abundance? Astron. Astrophys. 374, 646–655 (2001)

    Article  CAS  ADS  Google Scholar 

  3. Prantzos, N. Production and evolution of Li, Be, and B isotopes in the Galaxy. Astron. Astrophys. 542, A67 (2012)

    Article  ADS  Google Scholar 

  4. Audi, G., Bersillon, O., Blachot, J. & Wapstra, A. H. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3–128 (2003)

    Article  ADS  Google Scholar 

  5. Cameron, A. G. W. & Fowler, W. A. Lithium and the s-PROCESS in Red-Giant Stars. Astrophys. J. 164, 111–114 (1971)

    Article  CAS  ADS  Google Scholar 

  6. Waagen, E. O. Nova Delphini 2013 = PNV J20233073+2046041. AAVSO Alert Notice 489, (2013)

  7. Munari, U. et al. After a post-maximum plateau Nova Del 2013 has begun a normal decline. Astron. Telegr. 5304, 1 (2013)

    ADS  Google Scholar 

  8. Williams, R., Mason, E., Della Valle, M. & Ederoclite, A. Transient heavy element absorption systems in novae: episodic mass ejection from the secondary star. Astrophys. J. 685, 451–462 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Sadakane, K., Tajitsu, A., Mizoguchi, S., Arai, A. & Naito, H. Discovery of multiple high-velocity narrow circumstellar NaI D lines in Nova V1280 Sco. Publ. Astron. Soc. Jpn 62, L5–L10 (2010)

    Article  CAS  ADS  Google Scholar 

  10. McLaughlin, D. B. in Stellar Atmospheres (ed. Greenstein, J. L. ) 585–652 (The University of Chicago Press, 1960)

    Google Scholar 

  11. Skopal, A. et al. Early evolution of the extraordinary Nova Delphini 2013 (V339 Del). Astron. Astrophys. 569, A112 (2014)

    Article  Google Scholar 

  12. Williams, R. E. The formation of novae spectra. Astron. J. 104, 725–733 (1992)

    Article  CAS  ADS  Google Scholar 

  13. Warner, B. Cataclysmic variable stars. Camb. Astrophys. Ser. 28, 257–306 (1995)

    ADS  Google Scholar 

  14. Kramida, A., Ralchenko, Yu., Reader, J. & the NIST ASD team. NIST Atomic Spectra Database Ver. 5.1 http://physics.nist.gov/asd (National Institute of Standards and Technology, 2013)

  15. Yan, Z.-C., Nörtershäuser, W. & Drake, G. W. F. High precision atomic theory for Li and Be+: QED shifts and isotope shifts. Phys. Rev. Lett. 100, 243002 (2008)

    Article  ADS  Google Scholar 

  16. Arnould, M. & Norgaard, H. The explosive thermonuclear formation of 7Li and 11B. Astron. Astrophys. 42, 55–70 (1975)

    CAS  ADS  Google Scholar 

  17. Starrfield, S., Truran, J. W., Sparks, W. M. & Arnould, M. On Li-7 production in nova explosions. Astrophys. J. 222, 600–603 (1978)

    Article  CAS  ADS  Google Scholar 

  18. D'Antona, F. & Matteucci, F. Galactic evolution of lithium. Astron. Astrophys. 248, 62–71 (1991)

    CAS  ADS  Google Scholar 

  19. Boffin, H. M. J., Paulus, G., Arnould, M. & Mowlavi, N. The explosive thermonuclear formation of Li-7 revisited. Astron. Astrophys. 279, 173–178 (1993)

    CAS  ADS  Google Scholar 

  20. Hernanz, M., Jose, J., Coc, A. & Isern, J. On the synthesis of 7Li and 7Be in novae. Astrophys. J. 465, L27–L30 (1996)

    Article  CAS  ADS  Google Scholar 

  21. José, J. & Hernanz, M. Nucleosynthesis in classical novae: CO versus ONe white dwarfs. Astrophys. J. 494, 680–690 (1998)

    Article  ADS  Google Scholar 

  22. Naito, H., Tajitsu, A., Arai, A. & Sadakane, K. Discovery of metastable helium absorption lines in V1280 Scorpii. Publ. Astron. Soc. Jpn 65, 37 (2013)

    Article  ADS  Google Scholar 

  23. Harris, M. J. et al. Transient gamma-ray spectrometer observations of gamma-ray lines from novae. III. The 478 keV line from 7Be decay. Astrophys. J. 563, 950–957 (2001)

    Article  CAS  ADS  Google Scholar 

  24. Hernanz, M. in Classical Novae (eds Bode, M. F. & Evans, A. ) 2nd edn, 252–284 (Cambridge Astrophys. Ser. 43, Cambridge University Press, 2008)

    Book  Google Scholar 

  25. Sackmann, I.-J. & Boothroyd, A. I. Creation of 7Li and destruction of 3He, 9Be, 10B, and 11B in low-mass red giants, due to deep circulation. Astrophys. J. 510, 217–231 (1999)

    Article  CAS  ADS  Google Scholar 

  26. de la Reza, R., da Silva, L., Drake, N. A. & Terra, M. A. On 7Li enrichment by low-mass metal-poor red giant branch stars. Astrophys. J. 535, L115–L117 (2000)

    Article  CAS  ADS  Google Scholar 

  27. Sackmann, I.-J. & Boothroyd, A. I. The creation of superrich lithium giants. Astrophys. J. 392, L71–L74 (1992)

    Article  CAS  ADS  Google Scholar 

  28. Travaglio, C. et al. Galactic chemical evolution of lithium: interplay between stellar sources. Astrophys. J. 559, 909–924 (2001)

    Article  CAS  ADS  Google Scholar 

  29. Ventura, P. & D'Antona, F. The role of lithium production in massive AGB and super-AGB stars for the understanding of multiple populations in globular clusters. Mon. Not. R. Astron. Soc. 402, L72–L76 (2010)

    Article  ADS  Google Scholar 

  30. Melo, C. H. F. et al. On the nature of lithium-rich giant stars. Constraints from beryllium abundances. Astron. Astrophys. 439, 227–235 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Munari, U. & Henden, A. Photometry of the progenitor of Nova Del 2013 (V339 Del) and calibration of a deep BVRI photometric comparison sequence. Inform. Bull. Variable Stars 6087, 1 (2013)

    ADS  Google Scholar 

  32. Deacon, N. R. et al. Pre-outburst observations of Nova Del 2013 from Pan-STARRS 1. Astron. Astrophys. 563, A129 (2014)

    Article  Google Scholar 

  33. Denisenko, D. et al. V339 Delphini = Nova Delphini 2013 = Pnv J20233073+2046041. IAU Circ. No. 9258, 2 (2013)

    ADS  Google Scholar 

  34. The Fermi-LAT Collaboration. Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345, 554–558 (2014)

  35. Schaefer, G. H. et al. The expanding fireball of Nova Delphini 2013. Nature 515, 234–236 (2014)

    Article  CAS  ADS  Google Scholar 

  36. Noguchi, K. et al. High Dispersion Spectrograph (HDS) for the Subaru Telescope. Publ. Astron. Soc. Jpn 54, 855–864 (2002)

    Article  ADS  Google Scholar 

  37. Shenavrin, V. I., Taranova, O. G. & Tatarnikov, A. M. Dust formation in Nova Del 2013. Astron. Telegr. 5431, 1 (2013)

    ADS  Google Scholar 

  38. Tajitsu, A., Aoki, W., Kawanomoto, S. & Narita, N. Nonlinearity in the detector used in the Subaru Telescope High Dispersion Spectrograph. Publ. Natl. Astron. Obs. Jpn 13, 1–8 (2010)

    ADS  Google Scholar 

  39. Massey, P., Strobel, K., Barnes, J. V. & Anderson, E. Spectrophotometric standards. Astrophys. J. 328, 315–333 (1988)

    Article  ADS  Google Scholar 

  40. Moore, C. E. A Multiplet Table of Astrophysical Interest: NBS Technical Note No. 36, Reprinted Version of the 1945 edition (US Department of Commerce, 1959)

    Google Scholar 

  41. Kurucz, R. & Bell, B. Atomic Line Data CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995)

    Google Scholar 

Download references

Acknowledgements

This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan (NAOJ). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

Author information

Authors and Affiliations

Authors

Contributions

A.T. planned and carried out the Subaru High Dispersion Survey observations, reduced and analysed the data and prepared the manuscript. K.S., H.N., A.A., and W.A. participated in the discussion and contributed to the process of manuscript preparation.

Corresponding author

Correspondence to Akito Tajitsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Optical light curves of V339 Del.

V (green) and R (red) magnitudes are taken from the AAVSO database. The epochs of our HDS observations are indicated by arrows.

Extended Data Figure 2 Optical spectrum of V339 Del obtained at +38 d.

a, The radial velocity plots of three Fe ii emission lines belonging to the same multiplet number30 (42). In addition to the similarity of their broad emission profiles, all lines have common blue-shifted absorption line features around vrad ≈ −1,000 km s−1. b, An enlarged view of the absorption line features in a. Dips of individual absorption line are indicated with dashed lines. c, The absorption line systems in H i Balmer lines drawn on the same velocity scale as in b.

Extended Data Figure 3 Near-ultraviolet spectrum of V339 Del obtained at day +38.

a, The overall view of the spectrum from 308 nm to 350 nm. Identified Fe ii emission lines are indicated with red ticks at the bottom. The identified absorption line systems originating from iron-group ions are indicated by coloured ticks at the top: Fe ii (red), Ti ii (blue), Cr ii (green), Mn ii, Ni ii, and V ii (black). b, A sample of the absorption line identification. The results of our identification are displayed along the spectrum. c, As for Extended Data Fig. 2b, but for two lines (Ti ii and Cr ii), highlighted in b, which are plotted on the velocity scale.

Extended Data Figure 4 Spectra in the vicinity of the Be ii doublet from day +38 to day +52.

ac, The horizontal scale is displayed with the heliocentric (bottom) and the Doppler-corrected wavelengths (top). The Doppler corrections are applied using vdays = v+38, v+47, and v+48 for panels a, b, and c, respectively. The local continuums, fitted with high-order (10–20) spline functions, are overplotted with green lines. The positions of the strongest (vrad = vdays) and the second-strongest components of the absorption line system are indicated by coloured long and short lines connected by horizontal bars. d, Since no apparent absorption lines are found in day +52, a Doppler correction using v+48 is applied to the spectrum.

Extended Data Table 1 Journal of HDS observations of V339 Del

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajitsu, A., Sadakane, K., Naito, H. et al. Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013). Nature 518, 381–384 (2015). https://doi.org/10.1038/nature14161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14161

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing