Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An optical lattice clock with accuracy and stability at the 10−18 level

Abstract

Progress in atomic, optical and quantum science1,2 has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard3,4,5. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks6,7, their accuracy has remained 16 times worse8,9,10. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10−18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard—stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units11, the search for time variation of fundamental constants12, clock-based geodesy13 and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering14 (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clock comparisons between SrI and SrII.
Figure 2: Characterizing BBR effects on the 1S03P0 transition.
Figure 3: Examples of systematic evaluations.

Similar content being viewed by others

References

  1. Wineland, D. J. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013)

    Article  CAS  ADS  Google Scholar 

  2. Haroche, S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013)

    Article  CAS  ADS  Google Scholar 

  3. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010)

    Article  CAS  ADS  Google Scholar 

  4. Huntemann, N. et al. High-accuracy optical clock based on the octupole transition in 171Yb+ . Phys. Rev. Lett. 108, 090801 (2012)

    Article  CAS  ADS  Google Scholar 

  5. Madej, A. A., Dubé, P., Zhou, Z., Bernard, J. E. & Gertsvolf, M. 88Sr+ 445-THz single-ion reference at the 10−17 level via control and cancellation of systematic uncertainties and its measurement against the SI second. Phys. Rev. Lett. 109, 203002 (2012)

    Article  ADS  Google Scholar 

  6. Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103s. Phys. Rev. Lett. 109, 230801 (2012)

    Article  CAS  ADS  Google Scholar 

  7. Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013)

    Article  CAS  ADS  Google Scholar 

  8. Ludlow, A. D. et al. Lattice clock at 1 x 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Le Targat, R. et al. Experimental realization of an optical second with strontium lattice clocks. Nature Commun. 4, 2109, http://dx.doi.org/10.1038/ncomms3109 (2013)

    Article  CAS  ADS  Google Scholar 

  10. Falke, S. et al. The 87Sr optical frequency standard at PTB. Metrologia 48, 399–407 (2011)

    Article  CAS  ADS  Google Scholar 

  11. Bordé, C. J. Base units of the SI, fundamental constants and modern quantum physics. Phil. Trans. R. Soc. A 363, 2177–2201 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  CAS  ADS  Google Scholar 

  13. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  CAS  ADS  Google Scholar 

  14. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  15. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008)

    Article  CAS  ADS  Google Scholar 

  16. Takamoto, M., Hong, F.-L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005)

    Article  CAS  ADS  Google Scholar 

  17. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photon. 6, 687–692 (2012)

    Article  CAS  ADS  Google Scholar 

  18. Bishof, M., Zhang, X., Martin, M. J. & Ye, J. Optical spectrum analyzer with quantum limited noise floor. Phys. Rev. Lett. 111, 093604 (2013)

    Article  CAS  ADS  Google Scholar 

  19. Campbell, G. K. et al. Probing interactions between ultracold fermions. Science 324, 360–363 (2009)

    Article  CAS  ADS  Google Scholar 

  20. Swallows, M. D. et al. Suppression of collisional shifts in a strongly interacting lattice clock. Science 331, 1043–1046 (2011)

    Article  CAS  ADS  Google Scholar 

  21. Lemke, N. D. et al. p-Wave cold collisions in an optical lattice clock. Phys. Rev. Lett. 107, 103902 (2011)

    Article  CAS  ADS  Google Scholar 

  22. Middelmann, T., Falke, S., Lisdat, C. & Sterr, U. High accuracy correction of blackbody radiation shift in an optical lattice clock. Phys. Rev. Lett. 109, 263004 (2012)

    Article  ADS  Google Scholar 

  23. Boyd, M. M. et al. Optical atomic coherence at the 1-second time scale. Science 314, 1430–1433 (2006)

    Article  CAS  ADS  Google Scholar 

  24. Chandos, R. J. & Chandos, R. E. Radiometric properties of isothermal, diffuse wall cavity sources. Appl. Opt. 13, 2142–2152 (1974)

    Article  CAS  ADS  Google Scholar 

  25. Yasuda, M. & Katori, H. Lifetime measurement of the 3P2 metastable state of strontium atoms. Phys. Rev. Lett. 92, 153004 (2004)

    Article  ADS  Google Scholar 

  26. Middelmann, T. et al. Tackling the blackbody shift in a strontium optical lattice clock. IEEE Trans. Instrum. Meas. 60, 2550–2557 (2011)

    Article  CAS  Google Scholar 

  27. Boyd, M. et al. 87Sr lattice clock with inaccuracy below 10−15 . Phys. Rev. Lett. 98, 083002 (2007)

    Article  ADS  Google Scholar 

  28. Westergaard, P. G. et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106, 210801 (2011)

    Article  CAS  ADS  Google Scholar 

  29. Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 411–415 (2012)

    Article  Google Scholar 

  30. Cole, G. D., Zhang, W., Martin, M. J., Ye, J. & Aspelmeyer, M. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photon. 7, 644–650 (2013)

    Article  CAS  ADS  Google Scholar 

  31. Campbell, G. K. et al. The absolute frequency of the 87Sr optical clock transition. Metrologia 45, 539–548 (2008)

    Article  CAS  ADS  Google Scholar 

  32. Falke, S. et al. A strontium lattice clock with 3 × 10−17inaccuracy and its frequency. Preprint at http://arxiv.org/abs/1312.3419 (2013)

  33. McNamara, A. G. Semiconductor diodes and transistors as electrical thermometers. Rev. Sci. Instrum. 33, 330–333 (1962)

    Article  ADS  Google Scholar 

  34. Safronova, M. S., Porsev, S. G., Safronova, U. I., Kozlov, M. G. & Clark, C. W. Blackbody-radiation shift in the Sr optical atomic clock. Phys. Rev. A 87, 012509 (2013)

    Article  ADS  Google Scholar 

  35. Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a 1D optical lattice. Phys. Rev. A 80, 052703 (2009)

    Article  ADS  Google Scholar 

  36. Gibble, K. Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions. Phys. Rev. Lett. 110, 180802 (2013)

    Article  ADS  Google Scholar 

  37. Santra, R., Christ, K. & Greene, C. Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential. Phys. Rev. A 69, 042510 (2004)

    Article  ADS  Google Scholar 

  38. Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107, 301–311 (2012)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Martin, M. Swallows, E. Arimondo, J. L. Hall, T. Pfau, and W. D. Phillips for discussions and H. Green for technical assistance. This research is supported by the National Institute of Standards and Technology, the Defense Advanced Research Projects Agency’s QuASAR Program, and the NSF PFC. M.B. acknowledges support from the National Defense Science and Engineering Graduate fellowship programme. S.L.C. and M.B. acknowledge support from the NSF Graduate Fellowship. Any mention of commercial products does not constitute an endorsement by NIST.

Author information

Authors and Affiliations

Authors

Contributions

B.J.B., T.L.N., J.R.W., S.L.C., M.B., X.Z., W.Z., S.L.B. and J.Y. conceived, designed and carried out the experiments mentioned in this manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to J. Ye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, B., Nicholson, T., Williams, J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014). https://doi.org/10.1038/nature12941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12941

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing