Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin proteins and modifications as drug targets

Abstract

A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation is complex, new inhibitors such as these will hopefully be of clinical use in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of lysine methylation catalysed by histone lysine methyltransferases.
Figure 2: Histone methyltransferases and inhibitors to DOT1L and EZH2.
Figure 3: Histone demethylases and inhibitors to LSD1.
Figure 4: Bromodomain proteins and their inhibitors.

Similar content being viewed by others

References

  1. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011). This review provides an excellent overview of epigenetics with an emphasis on the linkage between genomic and epigenomic phenomena in cancer together with opportunities for biomarker-driven development of therapeutics.

    Article  CAS  Google Scholar 

  4. Issa, J. P. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, X., Lay, F., Han, H. & Jones, P. A. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol. Sci. 31, 536–546 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Khan, O. & La Thangue, N. B. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol. Cell Biol. 90, 85–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Wagner, J. M., Hackanson, B., Lubbert, M. & Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics 1, 117–136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. You, J. S. & Jones, P. A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Wu, S. C. & Zhang, Y. Role of protein methylation and demethylation in nuclear hormone signaling. Mol. Endocrinol. 23, 1323–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, K. & Dent, S. Y. Histone modifying enzymes and cancer: going beyond histones. J. Cell. Biochem. 96, 1137–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Ryan, R. J. & Bernstein, B. E. Genetic events that shape the cancer epigenome. Science 336, 1513–1514 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nature Rev. Cancer 12, 599–612 (2012).

    Article  CAS  Google Scholar 

  15. McCabe, M. T. et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl Acad. Sci. USA 109, 2989–2994 (2012).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer, C. et al. New insights to the MLL recombinome of acute leukemias. Leukemia 23, 1490–1499 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011). References 20 and 21 present compelling evidence for the involvement of DOT1L and H3K79 methylation in MLL-rearranged leukaemia and provide rationale for therapeutic targeting of the enzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anglin, J. L. et al. Synthesis and structure-activity relationship investigation of adenosine-containing inhibitors of histone methyltransferase DOT1L. J. Med. Chem. 55, 8066–8074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, W. et al. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorg. Med. Chem. 21, 1787–1794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment for MLL-fusion leukemia. Blood http://dx.doi.org/10.1182/blood-2013-04-497644 (2013).

  25. Morey, L. & Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 35, 323–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  28. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Wagener, N. et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 10, 524 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Takawa, M. et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci. 102, 1298–1305 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bracken, A. P. et al. EZH2 is downstream of the pRB–E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet. 43, 830–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Ryan, R. J. et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS ONE 6, e28585 (2011).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  36. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012). This is the first report of a potent and selective inhibitor of EZH2 with in vitro and in vivo activity compared with EZH2 mutant lymphomas.

    CAS  ADS  PubMed  Google Scholar 

  38. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature Chem. Biol. 8, 890–896 (2012).

    Article  CAS  Google Scholar 

  39. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl Acad. Sci. USA 109, 21360–21365 (2012).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  40. Valente, S. et al. Identification of PR-SET7 and EZH2 selective inhibitors inducing cell death in human leukemia U937 cells. Biochimie 94, 2308–2313 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Epizyme Inc. Inhibitors of human EZH2, and methods to use thereof. WO/2012/034132 (2012).

  42. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miranda, T. B. et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8, 1579–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013). This article reports activity of EZH2 inhibitors in solid tumours suggesting potential for clinical benefit beyond haematological malignancies.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  45. Kooistra, S. M. & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nature Rev. Mol. Cell Biol. 13, 297–311 (2012).

    Article  CAS  Google Scholar 

  46. Mosammaparast, N. & Shi, Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem. 79, 155–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Z. Q. et al. Identification of a novel gene, GASC1, within an amplicon at 9p23–24 frequently detected in esophageal cancer cell lines. Cancer Res. 60, 4735–4739 (2000).

    CAS  PubMed  Google Scholar 

  48. Liu, G. et al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28, 4491–4500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ehrbrecht, A. et al. Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J. Pathol. 208, 554–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, P. J. et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274, 15633–15645 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Hayami, S. et al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway. Mol. Cancer 9, 59 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. He, J., Nguyen, A. T. & Zhang, Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117, 3869–3880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jensen, L. R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Laumonnier, F. et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42, 780–786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012). This article describes the discovery, structural biology and activity of potent and selective Jumonji demethylase inhibitors.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  56. Lynch, J. T., Harris, W. J. & Somervaille, T. C. LSD1 inhibition: a therapeutic strategy in cancer? Expert Opin. Ther. Targets 16, 1239–1249 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Hayami, S. et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128, 574–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Kauffman, E. C. et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol. Carcinog. 50, 931–944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kahl, P. et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 66, 11341–11347 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Schulte, J. H. et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res. 69, 2065–2071 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nature Med. 18, 605–611 (2012). Reference 61 and 62 highlight the role of LSD1 in AML and the potential for inhibitors to synergize with all- trans -retinoic acid therapy.

    Article  CAS  PubMed  Google Scholar 

  63. Oryzon Genomics. Phenylcyclopropylamine derivatives and their medical use. WO/2010/084160 (2010).

  64. Ram, O. et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147, 1628–1639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    Article  CAS  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  66. Maes, T. et al. Preclinical characterization of a potent and selective inhibitor of the histone demethylase KDM1A for MLL leukemia. J. Clin. Oncol. 31, suppl; abstr. e13543 (2013).

    Article  Google Scholar 

  67. Lee, M. G., Wynder, C., Schmidt, D. M., McCafferty, D. G. & Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet. 35, 76–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Liang, Y., Vogel, J. L., Narayanan, A., Peng, H. & Kristie, T. M. Inhibition of the histone demethylase LSD1 blocks α-herpesvirus lytic replication and reactivation from latency. Nature Med. 15, 1312–1317 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gyuris, A. et al. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim. Biophys. Acta 1789, 413–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  73. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  74. Mitsubishi–Tanabe Pharma Corporation. Antitumor agent. WO/2009/084693 (2009).

  75. French, C. A. Demystified molecular pathology of NUT midline carcinomas. J. Clin. Pathol. 63, 492–496 (2010).

    Article  PubMed  Google Scholar 

  76. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  77. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011). Together with references 72 and 73, references 76 and 77 are outstanding demonstrations of the feasibility of inhibiting bromodomain proteins in inflammation and tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nature Med. 18, 298–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Simon, C. et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26, 651–656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  85. Stronach, E. A. et al. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res. 71, 4412–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu, W. et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nature Commun. 3, 1288 (2012).

    Article  ADS  CAS  Google Scholar 

  87. Amatangelo, M. D. et al. Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition. Cell Cycle 12, 2113–2119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Structural Genomics Consortium. Chemical Probes. http://www.thesgc.org/scientists/chemical_probes (SGC, 2013).

  89. Konze, K. D. et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem. Biol. 8, 1324–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, F. et al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem. 53, 5844–5857 (2010).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  92. Vedadi, M. et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chem. Biol. 7, 566–574 (2011).

    Article  CAS  Google Scholar 

  93. Yuan, Y. et al. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem. Biol. 7, 1152–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, F. et al. Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J. Med. Chem. 56, 2110–2124 (2013).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  95. Wan, H. et al. Benzo[d]imidazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1) — hit to lead studies. Bioorg. Med. Chem. Lett. 19, 5063–5066 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Sack, J. S. et al. Structural basis for CARM1 inhibition by indole and pyrazole inhibitors. Biochem. J. 436, 331–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Allan, M. et al. N-Benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg. Med. Chem. Lett. 19, 1218–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Seal, J. et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg. Med. Chem. Lett. 22, 2968–2972 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Picaud, S. et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res. 73, 3336–3346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Herold, J. M. et al. Small-molecule ligands of methyl-lysine binding proteins. J. Med. Chem. 54, 2504–2511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. James, L. I. et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nature Chem. Biol. 9, 184–191 (2013).

    Article  CAS  Google Scholar 

  102. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  103. Wissmann, M. et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biol. 9, 347–353 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Helin laboratory is supported by the Danish National Research Foundation, the Danish Cancer Society, the Novo Nordisk Foundation, the Lundbeck Foundation, the European Union, The European Research Council and the Excellence Programme of the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristian Helin or Dashyant Dhanak.

Ethics declarations

Competing interests

K.H. is a co-founder of EpiTherapeutic, and is a consultant for and has shares and warrants in the company. D.D. is a GSK shareholder and an employee of Jansen Pharmaceuticals.

Additional information

Reprints and permission information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helin, K., Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013). https://doi.org/10.1038/nature12751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12751

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer