Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin dynamics during cellular reprogramming

Abstract

Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of key molecular events during direct reprogramming.
Figure 2: Interplay between reprogramming factors and molecules influencing chromatin state.
Figure 3: Levels of epigenetic gene regulation during induced pluripotency.

Similar content being viewed by others

References

  1. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stadtfeld, M., Maherali, N., Breault, D. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Orkin, S. H. & Hochedlinger, K. Chromatin connections to pluripotency and cellular reprogramming. Cell 145, 835–850 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  9. Wernig, M., Meissner, A., Cassady, J. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012). This study performed the first single cell transcriptional analysis of nascent iPSCs and identified an early stochastic and a late deterministic phase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shu, J. et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 153, 963–975 (2013). This report demonstrated that iPSCs can be derived through ectopic expression of lineage specifiers rather than conventional pluripotency factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loh, K. M. & Lim, B. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8, 363–369 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hikichi, T. et al. Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proc. Natl Acad. Sci. USA 110, 6412–6417 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013). References 20 and 21 established comprehensive chromatin and DNA methylation maps of pluripotent and diverse lineage-restricted cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koche, R. P. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soufi, A., Donahue, G. & Zaret, K. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012). This publication determined how somatic chromatin structure influences access by reprogramming factors and identified important barriers to iPSC formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polo, J. M. & Hochedlinger, K. When fibroblasts MET iPSCs. Cell Stem Cell 7, 5–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Taberlay, P. C. et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147, 1283–1294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genet. 41, 246–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia, J. et al. Regulation of pluripotency and self- renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 151, 576–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fragola, G. et al. Cell reprogramming requires silencing of a core subset of polycomb targets. PLoS Genet. 9, e1003292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, T. et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9, 575–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, W. et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152, 1037–1050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biol. 14, 457–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genet. 45, 34–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Sridharan, R. et al. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nature Cell Biol. 15, 872–882 (2013). Reports 36 and 37 identified H3K9 methylation as a major chromatin barrier of cellular reprogramming into iPSCs.

    Article  CAS  PubMed  Google Scholar 

  38. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esch, D. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nature Cell Biol. 15, 295–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pawlak, M. & Jaenisch, R. De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes Dev. 25, 1035–1040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, Y. et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Skene, P. J. & Henikoff, S. Histone variants in pluripotency and disease. Development 140, 2513–2524 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Gaspar-Maia, A. et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nature Commun. 4, 1565 (2013).

    Article  ADS  CAS  Google Scholar 

  51. Pasque, V. et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 125, 6094–6104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barrero, M. J. et al. Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep. 3, 1005–1011 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Gaspar-Maia, A. et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 863–868 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, M. et al. NuRD Blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 31, 1278–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Rais, Y et al. Deterministic direct reprogramming of somatic cells to pluipotency. Nature http://dx.doi.org/10.1038/nature12587 (18 September 2013). This study reports that the depletion of the NURD component Mbd3 during iPSC induction is sufficient to render reprogramming a deterministic process.

  57. Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wei, Z. et al. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, H. et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30–35 (2013). References 61–63 identified pluripotency-specific, genome-wide interaction networks around pluripotency loci and implicate mediator and cohesin in their regulation.

    Article  CAS  PubMed  Google Scholar 

  64. Levasseur, D. N., Wang, J., Dorschner, M., Stamatoyannopoulos, J. & Orkin, S. Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev. 22, 575–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genet. 42, 53–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang, J. et al. Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell 7, 319–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ichida, J. K. et al. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5, 491–503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maherali, N. & Hochedlinger, K. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho, L. et al. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nature Cell Biol. 13, 903–913 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nature Struct. Mol. Biol. 20, 311–316 (2013).

    Article  CAS  Google Scholar 

  73. Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368–382 (2013). References 71 and 72 characterize the effect of combined Gsk3/Mapk signal inhibition ('2i') on the epigenome of ES cells and provide an intriguing link to Prdm14.

    Article  CAS  PubMed  Google Scholar 

  74. Ho, R., Papp, B., Hoffman, J. A., Merrill, B. J. & Plath, K. Stage-specific regulation of reprogramming to induced pluripotent stem cells by wnt signaling and T cell factor proteins. Cell Rep. 3, 2113–2126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Esteban, M. A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Stadtfeld, M. et al. Ascorbic acid prevents loss of Dlk1–Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nature Genet. 44, 398–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. O'Malley, J. et al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells. Nature 499, 88–91 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanabe, K., Nakamura, M., Narita, M., Takahashi, K. & Yamanaka, S. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc. Natl Acad. Sci. USA 110, 12172–12179 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769–782 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013). This provocative report suggests that induced pluripotency can be achieved with four small compounds and without the use of transcription factors.

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Egli, D. et al. Reprogramming within hours following nuclear transfer into mouse but not human zygotes. Nature Commun. 2, 488 (2011).

    Article  ADS  CAS  Google Scholar 

  84. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Wu, G. et al. Establishment of totipotency does not depend on Oct4A. Nature Cell Biol. 15, 1089–1097 (2013). The authors of this study discovered that Oct4 is dispensable for reprogramming somatic nuclei by SCNT, which pointed to important mechanistic differences with induced pluripotency.

    Article  CAS  PubMed  Google Scholar 

  86. Maekawa, M. et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Jullien, J., Astrand, C., Halley-Stott, R. P., Garrett, N. & Gurdon, J. B. Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc. Natl Acad. Sci. USA 107, 5483–5488 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu, X. et al. Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3–9. Science 340, 78–81 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, S. M., Kim, B. J., Norwood Toro, L. & Skoultchi, A. I. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc. Natl Acad. Sci. USA 110, 1708–1713 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nashun, B., Akiyama, T., Suzuki, M. G. & Aoki, F. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 6, 1489–1497 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Jullien, J. et al. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 5, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pasque, V., Gillich, A., Garrett, N. & Gurdon, J. B. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 30, 2373–2387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han, D. W. et al. Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26, 445–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Piccolo, F. M. et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 49, 1023–1033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pereira, C. F. et al. Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet. 4, e1000170 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Do, J. T. et al. Enhanced reprogramming of Xist by induced upregulation of Tsix and Dnmt3a. Stem Cells 26, 2821–2831 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Foshay, K. M. et al. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol. Cell 46, 159–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma, D. K., Chiang, C. H., Ponnusamy, K., Ming, G. L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pereira, C. F. et al. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Magnúsdóttir, E., Gillich, A., Grabole, N. & Surani, M. A. Combinatorial control of cell fate and reprogramming in the mammalian germline. Curr. Opin. Genet. Dev. 22, 466–474 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Chuva de Sousa Lopes, S. M. et al. X chromosome activity in mouse XX primordial germ cells. PLoS Genet. 4, e30 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sachs, M. et al. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell Rep. 3, 1777–1784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Durcova-Hills, G., Tang, F., Doody, G., Tooze, R. & Surani, M. A. Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE 3, e3531 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  105. Krentz, A. D. et al. The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc. Natl Acad. Sci. USA 106, 22323–22328 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M. & Saitou, M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genet. 41, 968–976 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Tan, K. Y., Eminli, S., Hettmer, S., Hochedlinger, K. & Wagers, A. J. Efficient generation of iPS cells from skeletal muscle stem cells. PLoS ONE 6, e26406 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. White, A. C. et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc. Natl Acad. Sci. USA 108, 7425–7430 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suvà, M. L., Riggi, N. & Bernstein, B. E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  115. He, J., Nguyen, A. T. & Zhang, Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117, 3869–3880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tzatsos, A. et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123, 727–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kapoor, A. et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krivtsov, A. V. et al. H3K79 methylation profiles define murine and human MLL–AF4 leukemias. Cancer Cell 14, 355–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nature Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stricker, S. H. et al. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev. 27, 654–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rapino, F. et al. C/EBPα induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep. 3, 1153–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bortvin, D. Egli, V. Pasque, B. Payer, B. Ren, X. Wei, M. Tahiliani and members of the laboratory for helpful suggestions, and B. Lowry, K. Plath and M. Stadtfeld for critical reading of the manuscript. We apologize to those colleagues whose work we could not cite due to space constraints. Support to E.A. was by HHMI and to K.H. by HHMI and NIH (R01HD058013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Hochedlinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permission information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolou, E., Hochedlinger, K. Chromatin dynamics during cellular reprogramming. Nature 502, 462–471 (2013). https://doi.org/10.1038/nature12749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12749

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing