Abstract

Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond historical analogues. Here we present a new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios. Using 1860 to 2005 as the historical period, this index has a global mean of 2069 (±18 years s.d.) for near-surface air temperature under an emissions stabilization scenario and 2047 (±14 years s.d.) under a ‘business-as-usual’ scenario. Unprecedented climates will occur earliest in the tropics and among low-income countries, highlighting the vulnerability of global biodiversity and the limited governmental capacity to respond to the impacts of climate change. Our findings shed light on the urgency of mitigating greenhouse gas emissions if climates potentially harmful to biodiversity and society are to be prevented.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Irreversibility, Uncertainty, and Learning: Portraits of Adaptation to Long-term Climate Change (Springer, 2000)

  2. 2.

    et al. Abrupt climate change. Science 299, 2005–2010 (2003)

  3. 3.

    & Novel climates, no-analog communities and ecological surprises. Front. Ecol. Environ 5, 475–482 (2007)

  4. 4.

    , , & Ecological Niches and Geographic Distributions (Monographs in Population Biology Vol. 49) (Princeton Univ. Press, 2011)

  5. 5.

    et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012)

  6. 6.

    & A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003)

  7. 7.

    , , , & Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011)

  8. 8.

    Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006)

  9. 9.

    , & Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416 (2006)

  10. 10.

    & Abrupt climate change and extinction events in Earth history. Science 240, 996–1002 (1988)

  11. 11.

    & in The Balance of Nature and Human Impact (ed. ) 239–257 (Cambridge Univ. Press, 2013)

  12. 12.

    et al. Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol. 16, 587–598 (2010)

  13. 13.

    & The influence of climate change on global crop productivity. Plant Physiol. 160, 1686–1697 (2012)

  14. 14.

    & Climate change impacts on global agricultural water deficit. Geophys. Res. Lett. 40, 1111–1117 (2013)

  15. 15.

    et al. Ground water and climate change. Nature Clim. Change 3, 322–329 (2013)

  16. 16.

    & Climate change and health: global to local influences on disease risk. Ann. Trop. Med. Parasitol. 100, 535–549 (2006)

  17. 17.

    Climate change and infectious disease: stormy weather ahead? Epidemiology 13, 373–375 (2002)

  18. 18.

    & Global warming and infectious disease. Arch. Med. Res. 36, 689–696 (2005)

  19. 19.

    & An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010)

  20. 20.

    , & Climate change and mental health: a causal pathways framework. Int. J. Public Health 55, 123–132 (2010)

  21. 21.

    , , & Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006)

  22. 22.

    Estimates of the damage costs of climate change. Part 1. Benchmark estimates. Environ. Resour. Econ. 21, 47–73 (2002)

  23. 23.

    The war against warming. Nature Rep. Clim. Change 3, 145–146, (2009)

  24. 24.

    , & Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007)

  25. 25.

    et al. (eds). Climate Change: The Physical Science Basis. Summary for Policymakers (Cambridge Univ. Press, 2007)

  26. 26.

    , & An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012)

  27. 27.

    et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011)

  28. 28.

    et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011)

  29. 29.

    , & Meeting radiative forcing targets under delayed participation. Energy Econ. 31, S152–S162 (2009)

  30. 30.

    et al. (eds). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide (Royal Society, 2005)

  31. 31.

    , , & Carbon emissions and acidification. Science 321, 51–52 (2008)

  32. 32.

    et al. A safe operating space for humanity. Nature 461, 472–475 (2009)

  33. 33.

    Global patterns in biodiversity. Nature 405, 220–227 (2000)

  34. 34.

    et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008)

  35. 35.

    , , , & Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008)

  36. 36.

    Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999)

  37. 37.

    , & Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008)

  38. 38.

    et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010)

  39. 39.

    , & Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography 21, 342–350 (1998)

  40. 40.

    & Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 81, 914–925 (2012)

  41. 41.

    Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos 122, 161–170 (2013)

  42. 42.

    et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Clim. Change 2, 121–124 (2012)

  43. 43.

    , & Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012)

  44. 44.

    et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011)

  45. 45.

    & Coral adaptation in the face of climate change. Science 320, 315–316 (2008)

  46. 46.

    , , & Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011)

  47. 47.

    et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010)

  48. 48.

    & Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003)

  49. 49.

    & Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010)

  50. 50.

    & Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar. Ecol. Prog. Ser. 434, 251–266 (2011)

  51. 51.

    et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009)

Download references

Acknowledgements

We thank D. Beilman for commenting on the paper; E. Wingert for help on the figures; D. Olsen for technical support; H. Kreft and the International Union for Conservation of Nature, BirdLife International, the Food and Agriculture Organization of the United Nations, the World Bank Database, the National Centers for Environmental Prediction, the World Database of Protected Areas, and the Gridded Human Population of the World Database for making their data openly available. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP5, and we thank the climate modelling groups (listed in Extended Data Table 1) for producing and making available their model outputs. This work was made possible by funding from the University of Hawai‘i Sea Grant to C.M. The paper was developed as part of the graduate course on ‘Methods for Large Scale Analyses’ in the Department of Geography, University of Hawai‘i at Mānoa. A.G.F. and T.W.G were supported by Pacific Islands Climate Change Cooperative (PICCC) award F10AC00077 and National Science Foundation Hawai‘i EPSCoR grant no. EPS-0903833. R.J.L. was supported by the Pacific Islands Climate Science Center and PICCC award F10A00079. R.S.D. and E.J.T. were supported by National Science Foundation Graduate Fellowships, and I.F.-S. by a postdoctoral fellowship from the Japanese Society for the Promotion of Science.

Author information

Affiliations

  1. Department of Geography, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i 96822, USA

    • Camilo Mora
    • , Abby G. Frazier
    • , Ryan J. Longman
    • , Joseph J. Sanchez
    • , Lauren R. Kaiser
    • , Yuko O. Stender
    • , Louise M. Giuseffi
    •  & Thomas W. Giambelluca
  2. Department of Biology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i 96822, USA

    • Rachel S. Dacks
    • , Maya M. Walton
    • , James M. Anderson
    •  & Christine M. Ambrosino
  3. Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i 96744, USA

    • Maya M. Walton
    • , Eric J. Tong
    • , Yuko O. Stender
    • , James M. Anderson
    • , Christine M. Ambrosino
    •  & Iria Fernandez-Silva
  4. Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i 96822, USA

    • Eric J. Tong
  5. Trans-disciplinary Organization for Subtropical Island Studies (TRO-SIS), University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan

    • Iria Fernandez-Silva

Authors

  1. Search for Camilo Mora in:

  2. Search for Abby G. Frazier in:

  3. Search for Ryan J. Longman in:

  4. Search for Rachel S. Dacks in:

  5. Search for Maya M. Walton in:

  6. Search for Eric J. Tong in:

  7. Search for Joseph J. Sanchez in:

  8. Search for Lauren R. Kaiser in:

  9. Search for Yuko O. Stender in:

  10. Search for James M. Anderson in:

  11. Search for Christine M. Ambrosino in:

  12. Search for Iria Fernandez-Silva in:

  13. Search for Louise M. Giuseffi in:

  14. Search for Thomas W. Giambelluca in:

Contributions

All authors contributed equally to conceive the study, compile the data, conduct analyses, and write the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Camilo Mora.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature12540

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.