Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction of the radiative decay of atomic coherence in squeezed vacuum

Abstract

Quantum fluctuations of the electromagnetic vacuum are responsible for physical effects such as the Casimir force and the radiative decay of atoms, and set fundamental limits on the sensitivity of measurements. Entanglement between photons can produce correlations that result in a reduction of these fluctuations below the ordinary vacuum level, allowing measurements that surpass the standard quantum limit in sensitivity1,2,3,4,5. The effects of such ‘squeezed states’ of light on matter were first considered in a prediction6 of the radiative decay rates of atoms in squeezed vacuum. Despite efforts to demonstrate such effects in experiments with natural atoms7,8,9, a direct quantitative observation of this prediction has remained elusive. Here we report a twofold reduction of the transverse radiative decay rate of a superconducting artificial atom coupled to continuum squeezed vacuum. The artificial atom is effectively a two-level system formed by the strong interaction between a superconducting circuit and a microwave-frequency cavity. A Josephson parametric amplifier is used to generate quadrature-squeezed electromagnetic vacuum. The observed twofold reduction in the decay rate of the atom allows the transverse coherence time, T2, to exceed the ordinary vacuum decay limit, 2T1. We demonstrate that the measured radiative decay dynamics can be used to reconstruct the Wigner distribution of the itinerant squeezed state. Our results confirm a canonical prediction6 of quantum optics and should enable new studies of the quantum light–matter interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified experiment set-up.
Figure 2: Transverse decay into squeezed vacuum.
Figure 3: Radiative decay dynamics in squeezed vacuum.
Figure 4: Dependence of the transverse and longitudinal decay times on LJPA detuning and bias.

Similar content being viewed by others

References

  1. Treps, N. et al. Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Grangier, P., Slusher, R. E., Yurke, B. & LaPorta, A. Squeezed-light enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Xiao, M., Wu, L.-A. & Kimble, H. J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987)

    Article  ADS  CAS  Google Scholar 

  4. Goda, K. et al. A quantum-enhanced prototype gravitational-wave detector. Nature Physics 4, 472–476 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Polzik, E. S., Carri, J. & Kimble, H. J. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Gardiner, C. W. Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. 56, 1917–1920 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Georgiades, N. P., Polzik, E. S., Edamatsu, K., Kimble, H. J. & Parkins, A. S. Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Dayan, B., Pe’er, A., Friesem, A. A. & Silberberg, Y. Two photon absorption and coherent control with broadband down-converted light. Phys. Rev. Lett. 93, 023005 (2004)

    Article  ADS  Google Scholar 

  9. Turchette, Q. A., Georgiades, N. P., Hood, C. J., Kimble, H. J. & Parkins, A. S. Squeezed excitation in cavity QED: experiment and theory. Phys. Rev. A 58, 4056–4077 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985)

    Article  ADS  CAS  Google Scholar 

  11. Ourjoumtsev, A. et al. Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Brooks, D. et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012)

    Article  ADS  CAS  Google Scholar 

  13. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008)

    Article  ADS  Google Scholar 

  14. Bergeal, N. et al. Phase preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Roch, N. et al. Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. Phys. Rev. Lett. 108, 147701 (2012)

    Article  ADS  CAS  Google Scholar 

  16. Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetometry with a quantum limited squid parametric amplifier. Phys. Rev. B 83, 134501 (2011)

    Article  ADS  Google Scholar 

  17. Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Bergeal, N., Schackert, F., Frunzio, L. & Devoret, M. H. Two-mode correlation of microwave quantum noise generated by parametric down-conversion. Phys. Rev. Lett. 108, 123902 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Flurin, E., Roch, N., Mallet, F., Devoret, M. H. & Huard, B. Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Ginossar, E. & Levit, S. Semiconductor microstructure in a squeezed vacuum: electron-hole plasma luminescence. Phys. Rev. B 72, 075333 (2005)

    Article  ADS  Google Scholar 

  21. Parkins, A. S., Zoller, P. & Carmichael, H. J. Spectral linewidth narrowing in a strongly coupled atom-cavity system via squeezed-light excitation of a “vacuum” Rabi resonance. Phys. Rev. A 48, 758–763 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Schoelkopf, R. J. Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  24. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  25. Kamal, A., Marblestone, A. & Devoret, M. Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier. Phys. Rev. B 79, 184301 (2009)

    Article  ADS  Google Scholar 

  26. Carmichael, H. J., Lane, A. S. & Walls, D. F. Resonance fluorescence from an atom in a squeezed vacuum. Phys. Rev. Lett. 58, 2539–2542 (1987)

    Article  ADS  CAS  Google Scholar 

  27. Mallet, F. et al. Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013)

    Article  ADS  CAS  Google Scholar 

  30. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999)

    Article  ADS  Google Scholar 

  31. Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013)

    Article  ADS  CAS  Google Scholar 

  32. Reed, M. D. et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Macklin, N. Roch and Lev S. Bishop for discussions. This research was supported in part (K.W.M., S.J.W. and I.S.) by the Office of Naval Research (N00014-13-1-0150) and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office (W911NF-11-1-0029). All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI or the US government. E.G. acknowledges support from EPSRC (EP/I026231/1). K.M.B. acknowledges support from US NSF GRFP (0645960) and IGERT (0801525).

Author information

Authors and Affiliations

Authors

Contributions

K.W.M. and S.J.W. performed the experiment and analysed the data. S.J.W. fabricated the qubit and parametric amplifier. K.W.M. wrote the manuscript. K.M.B. helped with the experimental set-up, provided theoretical support and wrote Supplementary Information. E.G. designed the experiment and provided theoretical support. All work was carried out under the supervision of I.S.

Corresponding author

Correspondence to K. W. Murch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Text and Data, additional references and Supplementary Figures 1-3. (PDF 321 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murch, K., Weber, S., Beck, K. et al. Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013). https://doi.org/10.1038/nature12264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12264

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing