Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deep fracture fluids isolated in the crust since the Precambrian era

Subjects

Abstract

Fluids trapped as inclusions within minerals can be billions of years old and preserve a record of the fluid chemistry and environment at the time of mineralization1,2,3. Aqueous fluids that have had a similar residence time at mineral interfaces and in fractures (fracture fluids) have not been previously identified. Expulsion of fracture fluids from basement systems with low connectivity occurs through deformation and fracturing of the brittle crust4. The fractal nature of this process must, at some scale, preserve pockets of interconnected fluid from the earliest crustal history. In one such system, 2.8 kilometres below the surface in a South African gold mine, extant chemoautotrophic microbes have been identified in fluids isolated from the photosphere on timescales of tens of millions of years5. Deep fracture fluids with similar chemistry have been found in a mine in the Timmins, Ontario, area of the Canadian Precambrian Shield. Here we show that excesses of 124Xe, 126Xe and 128Xe in the Timmins mine fluids can be linked to xenon isotope changes in the ancient atmosphere2 and used to calculate a minimum mean residence time for this fluid of about 1.5 billion years. Further evidence of an ancient fluid system is found in 129Xe excesses that, owing to the absence of any identifiable mantle input, are probably sourced in sediments and extracted by fluid migration processes operating during or shortly after mineralization at around 2.64 billion years ago. We also provide closed-system radiogenic noble-gas (4He, 21Ne, 40Ar, 136Xe) residence times. Together, the different noble gases show that ancient pockets of water can survive the crustal fracturing process and remain in the crust for billions of years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the Neon isotopic composition of free fluids and fluid inclusions in ancient crust.
Figure 2: Xenon isotopic spectrum.
Figure 3: The xenon isotopic evolution of Earth’s atmosphere shown over time2, relative to modern atmosphere.

Similar content being viewed by others

References

  1. Kendrick, M. A., Honda, M., Walshe, J. & Petersen, K. Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: constraints from noble gases and halogens. Precambr. Res. 189, 313–327 (2011)

    Article  ADS  CAS  Google Scholar 

  2. Pujol, M., Marty, B. & Burgess, R. Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet. Sci. Lett. 308, 298–306 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Lippmann-Pipke, J. et al. Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem. Geol. 283, 287–296 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Sleep, N. H. & Zoback, M. D. Did earthquakes keep the early crust habitable? Astrobiology 7, 1023–1032 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Sherwood Lollar, B. et al. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795 (2008)

    Article  ADS  Google Scholar 

  7. Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Lin, L.-H. et al. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 6, Q07003 (2005)

    Article  ADS  Google Scholar 

  9. Sherwood Lollar, B. et al. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097 (1993)

    Article  ADS  Google Scholar 

  10. Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Bleeker, W. & Parrish, R. R. Stratigraphy and U–Pb zircon geochronology of Kidd Creek: implications for the formation of giant volcanogenic massive sulphide deposits and the tectonic history of the Abitibi greenstone belt. Can. J. Earth Sci. 3, 1213–1231 (1996)

    Article  Google Scholar 

  12. Thurston, P. C. et al. Depositional gaps in Abitibi Greenstone Belt stratigraphy: a key to exploration for syngenetic mineralization. Econ. Geol. 103, 1097–1134 (2008)

    Article  CAS  Google Scholar 

  13. Thompson, P. H. A new metamorphic framework for gold exploration in the Timmins-Kirkland Lake area, western Abitibi greenstone belt: Discover Abitibi Initiative. Ontario Geologic Survey Open-File Rep. 6162, 1–104 (2005)

    Google Scholar 

  14. Bleeker, W., Parrish, R. R. & Sager-Kinsman, A. in The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada (eds Hannington, M. D. & Barrie, C. T. ) Econ. Geol. Monogr. 10, 43–69 (1999)

    Google Scholar 

  15. Sherwood Lollar, B. et al. Abiogenic formation of gaseous alkanes in the Earth’s crust as a minor source of global hydrocarbon reservoirs. Nature 416, 522–524 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Ballentine, C. J. & Burnard, P. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002)

    Article  CAS  Google Scholar 

  19. Marrocchi, Y., Robert, F. & Marty, B. Adsorption of xenon ions onto defects in organic surfaces: implications for the origin and the nature of organics in primitive meteorites. Geochim. Cosmochim. Acta 75, 6255–6266 (2011)

    Article  ADS  CAS  Google Scholar 

  20. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Pujol, M., Marty, B., Burnard, P. & Philipott, P. Xenon in Archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 73, 6834–6846 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Staudacher, T. Upper mantle origin for Harding County well gases. Nature 325, 605–607 (1987)

    Article  ADS  CAS  Google Scholar 

  23. Santos, F. J. et al. 129I record in a sediment core from Tinto River (Spain). Nucl. Instrum. Methods Phys. Res. B 259, 503–507 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Downes, M. J., Hodges, D. J. & Derwedumen, J. in Gold ‘82: The Geology, Geochemistry and Genesis of Gold Deposits (Proc. Symp. "Gold '82". Univ. Zimbabwe, May 24–28, 1982) (ed. Foster, R. P. ) 435–448 (A. A. Balkema, 1984)

    Google Scholar 

  25. Mumma, M. J. et al. Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine-bearing rocks on Mars. Geophys. Res. Lett. 37, L06201 (2010)

    Article  ADS  Google Scholar 

  27. Kennedy, B. M., Hiyagon, H. & Reynolds, J. Crustal neon: a striking uniformity. Earth Planet. Sci. Lett. 98, 277–286 (1990)

    Article  ADS  CAS  Google Scholar 

  28. Wieler, R. & Baur, H. Krypton and xenon from the solar wind and solar energetic articles in two lunar ilmenites of different antiquity. Meteoritics 29, 570–580 (1994)

    Article  ADS  CAS  Google Scholar 

  29. Srinivasan, B. Barites: anomalous xenon from spallation and neutron-induced reactions. Earth Planet. Sci. Lett. 31, 129–141 (1976)

    Article  ADS  CAS  Google Scholar 

  30. Ward, J. A. et al. Microbial hydrocarbon gases in the Witswatersrand Basin, South Africa: implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistry (John Wiley and Sons, 1993)

    Google Scholar 

  33. Torgersen, T. & Kennedy, B. M. Air-Xe enrichments in Elk Hills oil field gases : role of water in migration and storage. Earth Planet. Sci. Lett. 167, 239–253 (1999)

    Article  ADS  CAS  Google Scholar 

  34. Torgersen, T., Kennedy, B. M. & van Soest, M. C. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet. Sci. Lett. 226, 477–489 (2004)

    Article  ADS  CAS  Google Scholar 

  35. Zhou, Z., Ballentine, C. J., Schoell, M. & Stevens, S. H. Identifying and quantifying natural CO2 sequestration processes over geological timescales: the Jackson Dome CO2 deposit, USA. Geochim. Cosmochim. Acta 86, 257–275 (2012)

    Article  ADS  CAS  Google Scholar 

  36. Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. J. & Wieler, R. ) Rev. Mineral. Geochem. 47, 615–700 (2002)

    Article  CAS  Google Scholar 

  37. Bucher, K. & Stober, I. Fluids in the upper continental crust. Geofluids 10, 241–253 (2010)

    CAS  Google Scholar 

  38. Stober, I. Permeabilities and chemical properties of water in crystalline rocks of the Black Forest, Germany. Aquat. Geochem. 3, 43–60 (1997)

    Article  CAS  Google Scholar 

  39. Stober, I. & Bucher, K. Hydraulic properties of the crystalline basement. Hydrogeol. J. 15, 213–224 (2007)

    Article  ADS  CAS  Google Scholar 

  40. Guillot, L. et al. Porosity changes in a granite close to quarry faces: quantification and distribution by 14C-MMA and Hg porosimetries. Eur. Phys. J. A 9, 137–146 (2000)

    Article  CAS  Google Scholar 

  41. Aquilina, L., de Dreuzy, J. R., Bour, O. & Davy, P. Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forêts geothermal site. Geochim. Cosmochim. Acta 68, 2405–2415 (2004)

    Article  ADS  CAS  Google Scholar 

  42. Stober, I. & Bucher, K. in Hydrogeology of Crystalline Rocks (eds Stober, I. & Bucher, K. ) 53–78 (Kluwer, 2000)

    Book  Google Scholar 

  43. Torgersen, T. & Clarke, W. B. Helium accumulation in groundwater I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985)

    Article  ADS  CAS  Google Scholar 

  44. Ballentine, C. J., O'Nions, R. K., Oxburgh, E. R., Horvath, F. & Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229–246 (1991)

    Article  ADS  CAS  Google Scholar 

  45. Kulongoski, J. T., Hilton, D. R. & Izbicki, J. A. Helium isotope studies in the Mojave Desert, California: Implications for groundwater chronology and regional seismicity. Chem. Geol. 202, 95–113 (2003)

    Article  ADS  CAS  Google Scholar 

  46. Bethke, C. M., Zhao, X. & Torgersen, T. Groundwater flow and the He-4 distribution in the Great Artesian Basin of Australia. J. Geophys. Res. Solid Earth 104, 12999–13011 (1999)

    Article  Google Scholar 

  47. Ketchum, J. W. F. et al. Pericontinental Crustal Growth of the Southwestern Abitibi Subprovince, Canada—U-Pb, Hf, and Nd Isotope Evidence. Econ. Geol. 103, 1151–1184 (2008)

    Article  CAS  Google Scholar 

  48. Moulton, B. J. A. et al. Archean subqueous high-silica rhyolite coulees: examples from the Kidd-Munro Assemblage in the Abitibi Subprovince. Precambr. Res. 189, 389–403 (2011)

    Article  ADS  CAS  Google Scholar 

  49. Bottomley, D. J., Renaud, R., Kotzer, T. & Clark, I. D. Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield. Geology 30, 587–590 (2002)

    Article  ADS  CAS  Google Scholar 

  50. Martin, J. B., Gieskes, J. M., Torres, M. & Kastner, M. Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochim. Cosmochim. Acta 57, 4377–4389 (1993)

    Article  ADS  CAS  Google Scholar 

  51. Price, N. B. & Calvert, S. E. The geochemistry of iodine in oxidised and reduced Recent marine sediments. Geochim. Cosmochim. Acta 37, 2149–2158 (1973)

    Article  ADS  CAS  Google Scholar 

  52. Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  53. Ribas, I. et al. Evolution of the solar activity over time and effects on planetary atmospheres. II. κ1 Ceti, an analog of the Sun when life arose on Earth. Astrophys. J. 714, 384–395 (2010)

    Article  ADS  CAS  Google Scholar 

  54. Walker, R. R., Matulich, A., Amos, A. C., Watkins, J. J. & Mannard, G. W. The geology of the Kidd Creek mine. Econ. Geol. 70, 80–89 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Shirey for discussion on the geological history of the study areas and P. Burnard for a review. This work was funded by NSERC Discovery and CRC grants to B.S.L., a UK-NERC grant to C.J.B. and Deep Carbon Observatory support to C.J.B. and B.S.L. We are indebted to P. Calloway, P. Jurenovski, A. Marcotte and L. Kieser for assistance in sample collection.

Author information

Authors and Affiliations

Authors

Contributions

G.H., B.S.L. and C.J.B. designed the project, interpreted the data and wrote the paper. G.H. analysed the samples. G.F.S. and L.L. collected the field samples. G.F.S., L.L. and G.L.-C. characterized the gas and water samples and provided critical comment and input on the manuscript.

Corresponding author

Correspondence to C. J. Ballentine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3, Supplementary Figure 1 and additional references. (PDF 302 kb)

Exploration boreholes in the mine face at 2.4 km depth release fluids from fracture network fluids

Boreholes drilled to probe the direction of the ore producing seams can intersect a network of fractures containing fluid. Shown here is the mine face at 2.4 km depth at which multiple boreholes can be seen. Several of these boreholes are producing copious amounts of fluid. ‘Down’ is to the left. Boreholes are approximately 3.2cm in diameter. (AVI 26733 kb)

Free gas and fracture water flowing from boreholes via sampling device

A packer is placed into the opening of the exploration boreholes and fluid produced from the borehole flows at natural pressures and rates into a sampling device (shown here). A valve at the bottom of the device allows sampling of the fracture fluid, while a valve at the top (once purged of any air contamination) allows sampling of the pure gas phase form the borehole. The flow rate of each phase is determined (methods) and a sample of the different phases flowed through copper tubes for collection and analysis. The Perspex sampling vessel is approximately 0.5m in height and 10 cm in diameter. (WMV 8655 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, G., Lollar, B., Li, L. et al. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357–360 (2013). https://doi.org/10.1038/nature12127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing