Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heralded entanglement between solid-state qubits separated by three metres

Abstract

Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates1,2. Such capabilities are particularly useful when the entangled qubits are spatially separated3,4,5, providing the opportunity to create highly connected quantum networks6 or extend quantum cryptography to long distances7,8. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin–photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout9 on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations9,10,11,12,13 on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and protocol for generating long-distance entanglement between two solid-state spin qubits.
Figure 2: Generating and detecting indistinguishable photons.
Figure 3: Verification of entanglement using spin–spin correlations.
Figure 4: Dependence of the fidelity and the number of entanglement events on the detection time difference of the photons.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  2. Raussendorf, R. & Briegel, H. J. A. One-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2013)

    Article  ADS  CAS  Google Scholar 

  14. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    ADS  CAS  PubMed  Google Scholar 

  15. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Bernien, H. et al. Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 043604 (2012)

    Article  ADS  PubMed  Google Scholar 

  19. Sipahigil, A. et al. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010)

    Article  ADS  PubMed  Google Scholar 

  22. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013)

    Article  ADS  CAS  Google Scholar 

  26. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005)

    Article  ADS  Google Scholar 

  27. Bassett, L. C., Heremans, F. J., Yale, C. G., Buckley, B. B. & Awschalom, D. D. Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett. 107, 266403 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Robledo, L., Bernien, H., Van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010)

    Article  ADS  PubMed  Google Scholar 

  29. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Fu, K.-M. C. et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009)

    Article  ADS  PubMed  Google Scholar 

  31. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Jelezko, P. Kok, M. Lukin, J. Morton, E. Togan and L. Vandersypen for discussions and comments, and R. N. Schouten and M. J. Tiggelman for technical assistance. We acknowledge support from the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), the DARPA QuASAR programme, the EU SOLID, DIAMANT and S3NANO programmes and the European Research Council through a Starting Grant.

Author information

Authors and Affiliations

Authors

Contributions

H.B., B.H., L.R, L.C. and R.H. designed the experiment. H.B., B.H., W.P., G.K. and M.S.B. performed the experiments. H.B., B.H., W.P., G.K., M.S.B., T.H.T. and R.H. analysed the results. H.B., M.M. and D.J.T. fabricated the devices. H.B., B.H., W.P., M.S.B., L.C. and R.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to R. Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-9 and additional references. (PDF 451 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernien, H., Hensen, B., Pfaff, W. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). https://doi.org/10.1038/nature12016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing