Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanisms for oscillatory true polar wander

Abstract

Palaeomagnetic studies1,2,3,4,5 of Palaeoproterozoic to Cretaceous rocks propose a suite of large and relatively rapid (tens of degrees over 10 to 100 million years) excursions of the rotation pole relative to the surface geography, or true polar wander (TPW). These excursions may be linked in an oscillatory, approximately coaxial succession about the centre of the contemporaneous supercontinent5,6,7. Within the framework of a standard rotational theory8,9, in which a delayed viscous adjustment of the rotational bulge acts to stabilize the rotation axis10, geodynamic models for oscillatory TPW generally appeal to consecutive, opposite loading phases of comparable magnitude6,11,12. Here we extend a nonlinear rotational stability theory10 to incorporate the stabilizing effect of TPW-induced elastic stresses in the lithosphere13,14. We demonstrate that convectively driven inertia perturbations acting on a nearly prolate, non-hydrostatic Earth6,7 with an effective elastic lithospheric thickness of about 10 kilometres yield oscillatory TPW paths consistent with palaeomagnetic inferences. This estimate of elastic thickness can be reduced, even to zero, if the rotation axis is stabilized by long-term excess ellipticity in the plane of the TPW. We speculate that these sources of stabilization, acting on TPW driven by a time-varying mantle flow field11,12,15,16,17,18, provide a mechanism for linking the distinct, oscillatory TPW events of the past few billion years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TPW, supercontinent phases and the Earth’s figure.
Figure 2: Modelling palaeomagnetically inferred TPW during the Mesozoic.
Figure 3: Modelling palaeomagnetically inferred TPW during the Neoproterozoic.
Figure 4: Sensitivity of numerical predictions of convectively driven TPW to variations in model parameters.

Similar content being viewed by others

References

  1. Mitchell, R. N., Hoffman, P. F. & Evans, D. A. D. Coronation loop resurrected: oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton. Precambr. Res. 179, 121–134 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geol. Soc. Am. Bull. 118, 1099–1124 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Mitchell, R. N., Evans, D. A. D. & Kilian, T. M. Rapid Early Cambrian rotation of Gondwana. Geology 38, 755–758 (2010)

    Article  ADS  Google Scholar 

  4. Van der Voo, R. True polar wander during the middle Paleozoic? Earth Planet. Sci. Lett. 122, 239–243 (1994)

    Article  ADS  Google Scholar 

  5. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Evans, D. A. D. True polar wander, a supercontinental legacy. Earth Planet. Sci. Lett. 157, 1–8 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Evans, D. A. D. True polar wander and supercontinents. Tectonophysics 362, 303–320 (2003)

    Article  ADS  Google Scholar 

  8. Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)

    Article  ADS  Google Scholar 

  9. Goldreich, P. & Toomre, A. Some remarks on polar wandering. J. Geophys. Res. 74, 2555–2567 (1969)

    Article  ADS  Google Scholar 

  10. Ricard, Y., Spada, G. & Sabadini, R. Polar wandering of a dynamic Earth. Geophys. J. Int. 113, 284–298 (1993)

    Article  ADS  Google Scholar 

  11. Greff-Lefftz, M. Upwelling plumes, superswells and true polar wander. Geophys. J. Int. 159, 1125–1137 (2004)

    Article  ADS  Google Scholar 

  12. Steinberger, B. & Torsvik, T. H. Toward an explanation for the present and past locations of the poles. Geochem. Geophys. Geosyst. 11, Q06W06 (2010)

    Article  Google Scholar 

  13. Willemann, R. Reorientation of planets with elastic lithospheres. Icarus 60, 701–709 (1984)

    Article  ADS  Google Scholar 

  14. Matsuyama, I., Mitrovica, J. X., Perron, J. T., Manga, M. & Richards, M. A. Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res. 111, E02003 (2006)

    Article  ADS  Google Scholar 

  15. Spada, G., Ricard, Y. & Sabadini, R. Excitation of true polar wander by subduction. Nature 360, 452–454 (1992)

    Article  ADS  Google Scholar 

  16. Rouby, H., Greff-Lefftz, M. & Besse, J. Mantle dynamics, geoid, inertia and TPW since 120 Myr. Earth Planet. Sci. Lett. 292, 301–311 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Richards, M. A., Bunge, H.-P., Ricard, Y. & Baumgardner, J. R. Polar wandering in mantle convection models. Geophys. Res. Lett. 26, 1777–1780 (1999)

    Article  ADS  Google Scholar 

  18. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Ritsema, J. & Van Heijst, H. J. Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow. Sci. Prog. 83, 243–259 (2000)

    PubMed  Google Scholar 

  20. Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. 115, B06401 (2010)

    Article  ADS  Google Scholar 

  21. Chan, N.-H., Mitrovica, J. X., Matsuyama, I., Creveling, J. R. & Stanley, S. The rotational stability of a convecting Earth: assessing inferences of rapid TPW in the Late Cretaceous. Geophys. J. Int. 187, 1319–1333 (2011)

    Article  ADS  Google Scholar 

  22. Oldham, D. & Davies, J. H. Numerical investigation of layered convection in a three-dimensional shell with application to planetary mantles. Geochem. Geophys. Geosyst. 5, Q12C04 (2004)

    Article  Google Scholar 

  23. Zhong, S., Zhang, N., Li, Z.-X. & Roberts, J. H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet. Sci. Lett. 261, 551–564 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Steinberger, B. & O’Connell, R. J. in Ice Sheets, Sea Level and the Dynamic Earth (eds Mitrovica, J. X. & Vermeersen, L. L. A. ) 233–256 (AGU, Geodynamics Series 29, 2002)

    Book  Google Scholar 

  25. Tsai, V. C. & Stevenson, D. J. Theoretical constraints on true polar wander. J. Geophys. Res. 112, B05415 (2007)

    Article  ADS  Google Scholar 

  26. Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography. Earth Sci. Rev. 114, 325–368 (2012)

    Article  ADS  Google Scholar 

  27. Chambat, F., Ricard, Y. & Valette, B. Flattening of the Earth: further from hydrostaticity than previously estimated. Geophys. J. Int. 183, 727–732 (2010)

    Article  ADS  Google Scholar 

  28. Mitrovica, J. X. & Forte, A. M. A new inference of mantle viscosity based upon a joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225, 177–189 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Crowley, J., Gerault, M. & O’Connell, R. J. On the relative influence of thermal and water cycles on planetary dynamics. Earth Planet. Sci. Lett. 310, 380–388 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001)

    Google Scholar 

  31. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352–355 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Dziewonski, A., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom-up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010)

    Article  ADS  CAS  Google Scholar 

  33. Spada, G., Sabadini, R. & Boschi, E. True polar wander affects the Earth dynamic topography and implies a highly viscous lower mantle. Geophys. Res. Lett. 21, 137–140 (1994)

    Article  ADS  Google Scholar 

  34. Milne-Thomson, L. M. Theoretical Hydrodynamics 743 (Courier Dover, 1996)

    MATH  Google Scholar 

  35. Forte, A. M. & Peltier, W. R. Viscous flow models of global geophysical observables: 1. Forward problems. J. Geophys. Res. 96, 20131–20159 (1991)

    Article  ADS  Google Scholar 

  36. Forte, A. M. Constraints on seismic models from other disciplines—implications for mantle dynamics and composition. Treat. Geophys. 1, 805–858 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Evans, T. Torsvik and B. Steinberger for comprehensive and constructive reviews; A. Forte for providing us with geoid kernels; and C. Hay, N. Gomez, E. Morrow and A. Wickert for assistance with figures. We also thank A. Maloof, R. van der Voo, A. Watts, P. Hoffman, G. Spada, R. Mitchell, S. Stanley, S. Zhong, V. Tsai, D. Rowley and N. Swanson-Hysell for critical discussions; and D. Johnston and A. Knoll for reading of the manuscript. We acknowledge support from the Canadian Institute for Advanced Research and Harvard University.

Author information

Authors and Affiliations

Authors

Contributions

J.R.C. developed the conceptual idea for the study. All authors contributed to the technical analysis and the writing of the paper.

Corresponding author

Correspondence to J. R. Creveling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-5 and Supplementary References. This file was replaced on 03 May 2013, as Supplementary Figure 2 had corrupted in the original file posted online. (PDF 749 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creveling, J., Mitrovica, J., Chan, NH. et al. Mechanisms for oscillatory true polar wander. Nature 491, 244–248 (2012). https://doi.org/10.1038/nature11571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11571

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing