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Malaria elimination strategies require surveillance of the parasite
population for genetic changes that demand a public health res-
ponse, such as new forms of drug resistance1,2. Here we describe
methods for the large-scale analysis of genetic variation in
Plasmodium falciparum by deep sequencing of parasite DNA
obtained from the blood of patients with malaria, either directly
or after short-term culture. Analysis of 86,158 exonic single
nucleotide polymorphisms that passed genotyping quality control
in 227 samples from Africa, Asia and Oceania provides genome-
wide estimates of allele frequency distribution, population
structure and linkage disequilibrium. By comparing the genetic
diversity of individual infections with that of the local parasite
population, we derive a metric of within-host diversity that is
related to the level of inbreeding in the population. An open-access
web application has been established for the exploration of
regional differences in allele frequency and of highly differentiated
loci in the P. falciparum genome.

The genetic diversity and evolutionary plasticity of P. falciparum are
major obstacles for malaria elimination. New forms of resistance
against antimalarial drugs are continually emerging1,2, and new forms
of antigenic variation are a critical point of vulnerability for future
malaria vaccines. Effective tools are needed to detect evolutionary
changes in the parasite population and to monitor the spread of genetic
variants that affect malaria control.

Here we describe the use of deep sequencing to analyse
P. falciparum diversity, using blood samples from patients with malaria.
The P. falciparum genome has several unusual features that greatly com-
plicate sequence analysis, such as extreme AT bias, large tracts of non-
unique sequence and several large families of intensely polymorphic
genes3. Our aim was therefore not to determine the entire genome
sequence of individual field samples—which would be prohibitively
expensive with current technologies—but to define an initial set of single
nucleotide polymorphisms (SNPs) distributed across the P. falciparum
genome, whose genotype can be ascertained with confidence in para-
sitized blood samples by deep sequencing.

An additional complication in the analysis of P. falciparum genome
variation is that the billions of haploid parasites that infect a single
individual can be a complex mixture of genetic types. Previous
studies4–8 have largely focused on laboratory-adapted parasite clones,
but the within-host diversity of natural infections is of fundamental
biological interest. Parasites in the blood replicate asexually, but when
they are taken up in the blood meal of an Anopheles mosquito they
undergo sexual mating. If the parasites in the blood are of diverse
genetic types, this process of sexual mating can generate novel recom-
binant forms. Deep sequencing provides new ways of investigating
within-host diversity and the role of sexual recombination in parasite
evolution.

P. falciparum DNA was obtained from blood samples collected from
290 patients with malaria at clinics in Burkina Faso, Cambodia, Kenya,
Mali, Papua New Guinea and Thailand (Supplementary Table 1). For
149 samples we used the conventional method of growing the parasites
in short-term blood culture before extracting the P. falciparum DNA.
For 141 samples we used a new method by which P. falciparum DNA
is extracted directly from venous blood samples after the removal
of leukocytes9. We refer to these as cultured and direct samples,
respectively.

Paired-end sequence reads were generated (median 7 3 108 base
pairs per sample) by using the Illumina Genome Analyzer platform.
Sequence analysis was divided into stages of SNP discovery, quality
control filtering, genotyping and validation (see Supplementary
Methods and Supplementary Fig. 1). After alignment to the 3D7 ref-
erence genome3, non-coding regions had a much lower read depth
than coding regions (Supplementary Fig. 2): this can be ascribed to
their high AT content (non-coding 87% AT, coding 70% AT). Read
depth was also low in the highly polymorphic var, rifin and stevor
coding regions (Supplementary Fig. 3). For the purposes of this study,
to decrease genotyping errors due to low coverage or copy number
variation we excluded all non-coding regions, as well as coding regions
at the extremes of the read depth distribution. After these exclusions
we were left with 70% of all exonic positions across the genome, with
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more than 50% of exonic positions for 71% of genes, and more than
70% for 54% of genes (Supplementary Table 2).

Within-host diversity complicates the process of excluding sequen-
cing and alignment errors that are manifested as false heterozygous
genotypes. Two approaches were identified to address this problem (see
Supplementary Methods). We scored each position in the reference
genome for its degree of uniqueness, and this was found to be a strong
predictor of false heterozygous genotypes. We also observed a relation-
ship between the population allele frequency of a SNP and its
average level of within-sample heterozygosity, analogous to the
Hardy–Weinberg relationship in diploid organisms. This enabled us
to exclude SNPs that had excessive levels of within-sample heterozyg-
osity relative to their population frequency.

After applying the above filters, and excluding SNPs and samples
with high levels of missing data, we obtained a final data set of 86,158
SNPs genotyped in 227 samples (120 direct and 107 cultured) in which
a median of 98% samples had valid genotyping data for each SNP, and
a median of 98% SNPs had valid genotyping data for each sample
(Supplementary Fig. 4). This set of 86,158 SNPs (here referred to as
the 86k SNP set) represents 10% of the SNPs discovered at the initial
stage of sequence alignment. Comparison with the PlasmoDB 5.5
database indicates that 77,283 (89%) of these SNPs are novel, but it
should be noted that previous genome-wide SNP discovery efforts
have largely been based on low-coverage capillary sequencing, and
the overall error rate is unknown4–6.

The accuracy of genotype calls in the 86k SNP set was evaluated by
five independent approaches (see Supplementary Methods). We
examined the evidence for 275 putative novel SNPs using independent
data from PCR-based capillary sequencing and Sequenom primer-
extension mass spectrometry: the existence of the novel allele was
confirmed for 270 of the 275 loci. The genotype concordance rate with
Sequenom was 99.9% and with capillary sequencing it was 98.6%,
excluding heterozygotes (Supplementary Tables 3 and 4). In the case
of heterozygous genotypes, deep sequencing gives the allelic ratio,
whereas most other P. falciparum SNP typing methods give the majority
allele or return a missing genotype. The observation of heterozygosity by
deep sequencing was correlated with Sequenom’s failing to call a majority
allele, but when Sequenom made a majority allele call it agreed with
deep sequencing data in 94.8% of cases (Supplementary Fig. 5).
Capillary sequencing data do not allow allelic ratios to be quantified
precisely, but visual inspection of capillary sequence traces was con-
sistent with heterozygous genotype calls in the deep sequencing data
(Supplementary Fig. 6). In a separate study to be reported elsewhere,
we sequenced 90 laboratory-adapted parasite clones derived from
three genetic crosses of P. falciparum and determined that the rate of
Mendelian errors in the 86k SNP set was 0.05%.

Population genetic analyses were conducted with the 86k SNP set
typed in 227 samples as described above. The allele frequency spectrum
was dominated by low-frequency variants (Fig. 1 and Supplementary
Fig. 7) even when synonymous sites alone were considered, which is
consistent with recent population expansion (Supplementary Table 5)10.
Samples from Africa had a greater number of low-frequency variants
than samples from Southeast Asia or Papua New Guinea with or
without correction for sample size. Multiple lines of evidence indicate
that P. falciparum originated in Africa, and loss of low-frequency vari-
ation might have occurred as a result of population bottlenecks during
migration out of Africa, as in human populations10,11.

The most likely ancestral state of each SNP was determined from the
P. reichenowi genome sequence but is difficult to estimate with con-
fidence, because P. reichenowi might have diverged from P. falciparum
relatively recently, and its genome sequence has been determined for
only one individual (refs 6, 12 and T. D. Otto, unpublished oberva-
tions). There seem to be more SNPs with low-frequency derived (non-
ancestral) alleles in Africa than in Southeast Asia or Papua New
Guinea (Supplementary Figs 8 and 9). Focusing on SNPs that are
private to one continent, those with high derived allele frequency show

a considerable excess of non-synonymous substitutions, suggesting
that these are largely the result of directional selection (Fig. 1b and
Supplementary Fig. 10).

Many SNPs (64%) were observed in only one continent, but most
were low-frequency variants and larger sample sizes are needed to
determine how many of these are truly private. Corrected for sample
size, the number of private SNPs was greatest in East Africa and least in
Southeast Asia, both of which comprised cultured samples (Sup-
plementary Fig. 11). Intermediate numbers were observed in West
Africa and Papua New Guinea, both of which comprised direct samples.
Thus the effect of culturing on SNP ascertainment seems to be relatively
small in comparison with the effect of geographical location.

The global population structure of P. falciparum shows a clear
division by continent (Fig. 2a). Mean fixation index (Fst) values
between continents ranged from 0.19 to 0.28 (Supplementary Table 6).
Population structure within continents is evident from Fst values,
principal-components analysis (Supplementary Fig. 12) and a
neighbour-joining tree (Fig. 2b). All of these methods show greater
degree of population structure in Southeast Asia than in West Africa;
that is, samples from Cambodia and Thailand form separate clusters,
whereas samples from Mali and Burkina Faso are intermixed. These
data are consistent with previous evidence that parasite population
structure tends to be increased in regions of low or patchy malaria
transmission13.

To understand the hierarchical population structure of
P. falciparum, methods are needed to quantify the genetic diversity
of individual infections relative to the genetic diversity of the parasite
population as a whole. With deep sequencing data, we can estimate
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Figure 1 | Allele frequency spectrum of SNPs genotyped in this study.
a, Minor-allele frequency distribution of 86k SNPs set in samples from different
continents: Africa (red), Southeast Asia (green) and Papua New Guinea (blue).
The y axis shows the number of SNPs in each category of allele frequency.
Supplementary Figure 7 shows the data corrected for sample size. b, Ratio of
non-synonymous (N) to synonymous (S) substitutions, as a function of derived
allele frequency for SNPs that are private to either Africa, Southeast Asia or
Papua New Guinea.
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levels of heterozygosity both within an individual sample (Hw) and
within the local parasite population (Hs). For a biallelic SNP, we define
Hw as 2pwqw, where pw and qw denote the proportions of the two alleles
in the sequence reads of an individual sample, and Hs as 2psqs, where ps

and qs denote the corresponding population allele frequencies at that
geographical location. We observe a strong linear relationship between
Hw and Hs when data for all 86k SNPs are aggregated for an individual
sample (Fig. 3a and Supplementary Fig. 13). More specifically, each
sample shows a linear relationship between Hw and Hs but the gradient
of the line varies considerably between samples. This gradient is

essentially a genome-wide estimate of Hw/Hs for the sample in ques-
tion. Thus for each sample we can derive the metric Fws, where

Fws 5 1 2 Hw/Hs

This is closely related to Wright’s inbreeding coefficient Fis, which can
be formulated as

Fis 5 1 2 Hi/Hs

where Hi is the heterozygosity of the individual and Hs is that of the
local population14. Estimation of Fis is of practical relevance for malaria
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control, because high rates of inbreeding are thought to favour the
emergence of multigenic drug resistance15,16. Fis is conventionally mea-
sured at the oocyst stage of infection—that is, after the parasites have
undergone sexual mating within the mosquito and before they develop
into separate haploid forms—but this is technically demanding and
difficult to implement on a large scale15,17. Because parasites undergo
sexual mating shortly after the mosquito has ingested blood from an
infected person, the level of within-host diversity determines the
potential for inbreeding or outcrossing in the next generation. Thus
Fws values observed in blood samples provide a proxy indicator of
inbreeding rates in the population. The precise relationship to inbreed-
ing rates quantified in oocysts merits further investigation. We report
elsewhere a study of how Fws relates to standard methods of estimating
multiplicity of infection18.

We observe marked differences in Fws between locations (Fig. 3b).
High levels of Fws (0.95 or more) were much more common in Papua
New Guinea (89% of samples) than in West Africa (38%), with inter-
mediate rates in Southeast Asia (67%) and East Africa (63%). Culturing
might affect Fws estimation, but the samples from Papua New Guinea
and West Africa were not cultured. In general, high levels of inbreeding
tend to be associated with low transmission intensity13, and these data
are therefore somewhat surprising because the entomological inocu-
lation rate has been estimated to lie in the range 45–293 in Madang in
Papua New Guinea19, where the Papua New Guinea samples were
collected, in contrast with 140–389 in Burkina Faso19, about 6 in rural
areas of Cambodia20 and about 1 on the Thailand–Burma border21.
Although the entomological inoculation rate can be highly variable
within a locality and these estimates are indicative, it seems unlikely
that the high levels of Fws in Papua New Guinea are primarily due to

low transmission intensity. An alternative explanation is that, in this
geographical region, people tend to live in small isolated communities,
which might reduce the likelihood of infection with parasites of differ-
ent genetic types. The small size of the Papua New Guinea sample
provides limited information about local parasite population structure
(Supplementary Fig. 14), but previous studies indicate that this is very
high in some villages within this area of Papua New Guinea22.

These data allow linkage disequilibrium in the P. falciparum genome
to be estimated with greater precision than has previously been possible.
In particular, we can begin to distinguish linkage disequilibrium due to
haplotype structure, which decays with distance in the genome, from
linkage disequilibrium due to population structure, which is independ-
ent of distance in the genome (see Supplementary Methods, Sup-
plementary Tables 7 and 8 and Supplementary Figs 15–17). Averaged
across the genome, after correcting for population structure and other
confounders, we find that r2 decays to less than 0.1 within 1 kilobase
(kb) in all populations studied here, whereas D9 decays to less than 0.1
within about 1 kb in West Africa and East Africa, and within 50 kb in
Southeast Asia and Papua New Guinea (Supplementary Fig. 18). These
findings imply that high levels of haplotypic diversity exist at all of these
locations, despite low transmission intensity and high rates of inbreed-
ing at some locations. This might be partly due to the high rate of
meiotic recombination in P. falciparum, previously estimated to be
about 17 kb per centimorgan23. It is also possible that much of the
haplotypic diversity seen in contemporary P. falciparum populations
has ancient origins, and arose in Africa before P. falciparum was spread
around the world by human migration. This would be analogous to the
situation that is seen in human populations, in which migration out of
Africa was associated with a series of population bottlenecks, which
have led to a reduction in haplotypic diversity in descendant popula-
tions around the world11. The higher levels of linkage disequilibrium
observed in Southeast Asia and Papua New Guinea than in West Africa
and East Africa are consistent with both of these possibilities.

A web application is provided for browsing, querying and down-
loading information about all of the SNPs genotyped in this study and
their allele frequencies in different geographical regions (http://
www.malariagen.net/resource/10). It can be used, for example, to view
regional patterns of variation in known antimalarial drug resistance
genes: from these data it is immediately apparent that the pfcrt K76T
allele has markedly different haplotypic backgrounds in Southeast Asia
and in Papua New Guinea, consistent with previous evidence that
chloroquine resistance has evolved independently in multiple loca-
tions (Supplementary Table 9)1,24. It can also be used to search for
genes that are highly differentiated between geographical regions
(Supplementary Tables 10 and 11). For example, two genes that affect
the fertility of gametocytes, Pfs230 and Pf47, are among the most
highly differentiated loci in this data set25. Two SNPs in Pfs230 codon
1566 result in three amino-acid variants: N (widespread), T (private to
Southeast Asia, frequency 0.87) and K (private to Africa, frequency
0.79). Codon variant T236I of Pf47 has a fixed difference between
Africa and other populations. These data lend weight to previous
reports of extreme differentiation in Pf47 and the related gene Pfs48/
45 (ref. 26), which is suggested to be due to evolutionary selection of
gamete recognition and compatibility. Another example is codon vari-
ant F368S of the putative transporter gene PFA0245w (ref. 27), which
has a fixed difference between Papua New Guinea and other popula-
tions, raising the question of whether this has a function in drug res-
istance; it is also noteworthy that the Plasmodium berghei orthologue
of this gene is critical for sexual development of the parasite28.

These data are the first stage in the development of methods for
population-based genome sequencing of P. falciparum. Work is ongoing
to increase the number of SNPs that can be reliably genotyped, and to
develop accurate methods for typing indels, copy number polymorph-
isms and large structural variations. Future studies will benefit from
new methods to reduce the effects of AT bias on sequencing library
preparation29,30, and the increasing length and accuracy of sequencing
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reads will allow greater access to highly polymorphic regions of the
genome. Such technical advances will enable an expanding range of
applications, for example high-resolution analyses of local population
structure to explore models of space–time clustering and immuno-
logical strain selection.

Genome sequencing of parasites in clinical blood samples is an
important step towards translation to public health applications, for
example developing effective genetic markers to track the spread of
antimalarial drug resistance and to monitor evolutionary changes in
the parasite population7,8. There is a need to develop protocols, tools
and resources and to enable researchers in malaria endemic countries
to integrate parasite genome sequencing into clinical and epidemiolo-
gical investigations, and to facilitate open-access sharing of large-scale
population genomic data.

METHODS SUMMARY
Blood samples from malaria patients were collected with informed consent after
approval by local ethics committees. Parasite DNA was extracted from blood
samples after leukocyte depletion to minimize contamination with human
DNA, or after short-term culture in vitro. Samples with less than 60% human
DNA contamination were sequenced with an Illumina Genome Analyser.
Sequence reads of length 37–76 base pairs were aligned to the 3D7 reference
sequence3 using the bwa and samtools algorithms, and then with the more stringent
SNP-o-matic algorithm that allowed for SNPs discovered in the first step. This gave
868,117 potential SNPs, including 74% (71,608/96,527) of SNPs previously iden-
tified in the PlasmoDB 5.5 database.

Various quality-control steps were applied. We discarded potential SNPs with
insufficient evidence, those in non-coding regions, and those in coding regions
with sequencing coverage outside the 15th centile and the 85th centile of read
depth. To minimize alignment errors, we scored each position in the reference
genome for its degree of uniqueness, and excluded positions that were liable to give
false heterozygous genotypes. We analysed levels of heterozygosity across all
samples, discarding positions where heterozygosity was inconsistent with popu-
lation allele frequencies. Genotypes were determined at positions with at least five
reads, resulting in a set of 86,158 biallelic SNPs that could be genotyped with low
missingness in 227 samples.

Five methods were used to validate genotyping calls: Sequenom primer-
extension mass spectrometry, PCR-based capillary sequencing, Illumina GoldenGate
array, high-density NimbleGen microarray, and analysis of error rates in genotypes
from P. falciparum genetic crosses. Allele frequencies were determined in four popu-
lations, deriving ancestral alleles from comparison with P. reichenowi sequences
wherever possible. SNPs were classified in accordance with PlasmoDB 5.5 func-
tional annotations. Principal-components analysis and phylogeny analysis were
performed using R language libraries, and custom R and Java programs were used
for other data analysis.
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