Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly

Abstract

S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria1,2,3. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications4,5,6,7. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins8,9,10. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a ϕ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca2+ ion coordination. A Ca2+-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology4,5,6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray structure of G. stearothermophilus SbsB.
Figure 2: Solution studies of SbsB quaternary structure.
Figure 3: Cryo-EM imaging and lattice model for the SbsB S-layer.
Figure 4: Model for the G. stearothermophilus SbsB S-layer.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for SbsB32–920:NbKB6 are deposited in the Protein Data Bank under accession code 4AQ1.

References

  1. Sara, M. & Sleytr, U. B. S-layer proteins. J. Bacteriol. 182, 859–868 (2000)

    Article  CAS  Google Scholar 

  2. Glauert, A. M. The fine structure of bacteria. Br. Med. Bull. 18, 245–250 (1962)

    Article  CAS  Google Scholar 

  3. Messner, P., Schäffer, C., Egelseer, E. M. & Sleytr, U. B. in Prokaryotic Cell Wall Compounds—Structure and Biochemistry (eds Konig, H., Claus, H., & Varma, A. ) 53–109 (Springer, 2010)

    Book  Google Scholar 

  4. Sleytr, U. B. et al. in Progress in Molecular Biology and Translational Science vol. 103 (ed. Howorka, S. ) 277–352 (Academic, 2011)

    Google Scholar 

  5. Howorka, S. Rationally engineering natural protein assemblies in nanobiotechnology. Curr. Opin. Biotechnol. 22, 485–491 (2011)

    Article  CAS  Google Scholar 

  6. Mark, S. S. et al. Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. Langmuir 22, 3763–3774 (2006)

    Article  CAS  Google Scholar 

  7. Nam, Y. S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotechnol. 5, 340–344 (2010)

    Article  CAS  ADS  Google Scholar 

  8. Fagan, R. P. et al. Structural insights into the molecular organization of the S-layer from Clostridium difficile . Mol. Microbiol. 71, 1308–1322 (2009)

    Article  CAS  Google Scholar 

  9. Pavkov, T. et al. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16, 1226–1237 (2008)

    Article  CAS  Google Scholar 

  10. Kern, J. et al. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol. Chem. 286, 26042–26049 (2011)

    Article  CAS  Google Scholar 

  11. Engelhardt, H. & Peters, J. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer–cell wall interactions. J. Struct. Biol. 124, 276–302 (1998)

    Article  CAS  Google Scholar 

  12. Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. F. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect. Immun. 70, 5770–5778 (2002)

    Article  CAS  Google Scholar 

  13. Kern, J. & Schneewind, O. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol. Microbiol. 75, 324–332 (2010)

    Article  CAS  Google Scholar 

  14. Steyaert, J. & Kobilka, B. K. Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011)

    Article  CAS  Google Scholar 

  15. Sara, M. et al. Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition. J. Bacteriol. 178, 2108–2117 (1996)

    Article  CAS  Google Scholar 

  16. Runzler, D., Huber, C., Moll, D., Kohler, G. & Sara, M. Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains. J. Biol. Chem. 279, 5207–5215 (2004)

    Article  Google Scholar 

  17. Kinns, H. & Howorka, S. The surface location of individual residues in a bacterial S-layer protein. J. Mol. Biol. 377, 589–604 (2008)

    Article  CAS  Google Scholar 

  18. Kinns, H., Badelt-Lichtblau, H., Egelseer, E. M., Sleytr, U. B. & Howorka, S. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus . J. Mol. Biol. 395, 742–753 (2010)

    Article  CAS  Google Scholar 

  19. Moll, D. et al. S-layer–streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc. Natl Acad. Sci. USA 99, 14646–14651 (2002)

    Article  CAS  ADS  Google Scholar 

  20. Mader, C., Kupcu, S., Sara, M. & Sleytr, U. B. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim. Biophys. Acta 1418, 106–116 (1999)

    Article  CAS  Google Scholar 

  21. Sara, M., Egelseer, E. M., Dekitsch, C. & Sleytr, U. B. Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer, on the N-terminal part of the S-layer protein SbsB from Bacillus stearothermophilus PV72/p2. J. Bacteriol. 180, 6780–6783 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pavkov-Keller, T., Howorka, S. & Keller, W. in Progress in Molecular Biology and Translational Science vol. 103 (ed. Howorka, S. ) 73–130 (Academic, 2011)

    Google Scholar 

  23. Boggon, T. J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002)

    Article  CAS  ADS  Google Scholar 

  24. Sotomayor, M. & Schulten, K. The allosteric role of the Ca++ switch in adhesion and elasticity of C-cadherin. Biophys. J. 94, 4621–4633 (2008)

    Article  CAS  Google Scholar 

  25. Howorka, S. et al. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. J. Biol. Chem. 275, 37876–37886 (2000)

    Article  CAS  Google Scholar 

  26. Li, L., Jose, J., Xiang, Y., Kuhn, R. J. & Rossmann, M. G. Structural changes of envelope proteins during alphavirus fusion. Nature 468, 705–708 (2010)

    Article  CAS  ADS  Google Scholar 

  27. Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010)

    Article  CAS  ADS  Google Scholar 

  28. Yeates, T. O., Thompson, M. C. & Bobik, T. A. The protein shells of bacterial microcompartment organelles. Curr. Opin. Struct. Biol. 21, 223–231 (2011)

    Article  CAS  Google Scholar 

  29. Ganser-Pornillos, B. K., Cheng, A. & Yeager, M. Structure of full-length HIV-1CA: a model for the mature capsid lattice. Cell 131, 70–79 (2007)

    Article  CAS  Google Scholar 

  30. De Genst, E. et al. Chemical basis for the affinity maturation of a camel single domain antibody. J. Biol. Chem. 279, 53593–53601 (2004)

    Article  CAS  Google Scholar 

  31. Gangola, P. & Rosen, B. P. Maintenance of intracellular calcium in Escherichia coli . J. Biol. Chem. 262, 12570–12574 (1987)

    CAS  PubMed  Google Scholar 

  32. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010)

    Article  CAS  Google Scholar 

  33. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  Google Scholar 

  35. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011)

    Article  CAS  Google Scholar 

  36. Konarev, P., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003)

    Article  CAS  Google Scholar 

  37. Svergun, D. I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503 (1992)

    Article  CAS  Google Scholar 

  38. Svergun, D. I., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995)

    Article  CAS  Google Scholar 

  39. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001)

    Article  CAS  Google Scholar 

  40. Kozin, M. B. & Svergun, D. I. Automated matching of high- and low-resolution structural models. J. Appl. Cryst. 34, 33–41 (2001)

    Article  CAS  Google Scholar 

  41. Wriggers, W. Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2, 21–27 (2010)

    Article  Google Scholar 

  42. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  43. Gipson, B., Zeng, X., Zhang, Z. Y. & Stahlberg, H. 2dx—user-friendly image processing for 2D crystals. J. Struct. Biol. 157, 64–72 (2007)

    Article  CAS  Google Scholar 

  44. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  Google Scholar 

  45. Gipson, B., Zeng, X. & Stahlberg, H. 2dx_merge: data management and merging for 2D crystal images. J. Struct. Biol. 160, 375–384 (2007)

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994)

  47. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank staff at beamlines Proxima-1 and SWING (Soleil), beamline BM30A (European Synchrotron Radiation Facility) and beamline X33 (Deutsches Elektronen-Synchrotron) for technical assistance during data collection. We thank G. Waksman for suggestions on the manuscript, and D. Levy for advice on cryo-EM grid preparation and data collection. This work was supported by VIB (Vlaams Institute voor Biotechnologie) grant PRJ9 to H.R., the Fonds Wetenschappelijk Onderzoek-Vlaanderen through an Odysseus grant to H.R., a postdoctoral fellowship to A.P.G. and research grant FWO551 to J.S. R.F. is supported by the Centre National de la Recherche Scientifique (CNRS) and the Institut Pasteur. G.P.A. is supported by the CNRS. E.P. received support from Interuniversity Attraction Poles grant P6/19. D.P. was funded by Biotechnology and Biological Sciences Research Council grant BB/E010466/1, and S.H. is grateful for support from University College London. We acknowledge Professor Emeritus U. Sleytr for his lifelong devotion to S-layer protein research and G. stearothermophilus SbsB in particular.

Author information

Authors and Affiliations

Authors

Contributions

K.B. produced and crystallized SbsB:NbKB6 complexes, collected and analysed diffraction and SAXS data and determined their structures. A.P.G. analysed SAXS data and collected SAXS, isothermal titration calorimetry and circular dichroism data. N.V.G. performed mutagenesis and crosslinking experiments. R.F. grew S-layers in vitro and analysed cryo-EM data. G.P.A. prepared cryo-EM grids and collected cryo-EM data. E.P. and J.S. produced SbsB-binding nanobodies. D.P. performed crosslinking experiments. S.H. produced SbsB constructs, supervised D.P. and wrote the manuscript. H.R. supervised the work, collected diffraction data, solved and analysed the structures and wrote the manuscript.

Corresponding author

Correspondence to Han Remaut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 and Supplementary Table 1. (PDF 1710 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranova, E., Fronzes, R., Garcia-Pino, A. et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012). https://doi.org/10.1038/nature11155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing