Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heart repair by reprogramming non-myocytes with cardiac transcription factors

Abstract

The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodelling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, HAND2, MEF2C and TBX5, can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodelling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming fibroblasts towards a cardiac phenotype in vitro by GHMT.
Figure 2: Reprogramming non-cardiomyocytes towards a cardiac fate in vivo by GHMT.
Figure 3: Lineage tracing of GHMT-induced iCLMs in vivo.
Figure 4: Ameliorated cardiac function of injured hearts by GHMT.
Figure 5: Attenuation of fibrosis in response to myocardial infarction by GHMT.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data were deposited in the Gene Expression Omnibus database (accession number GSE37057).

References

  1. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006)

    Article  PubMed  Google Scholar 

  2. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  3. Yacoub, M., Suzuki, K. & Rosenthal, N. The future of regenerative therapy in patients with chronic heart failure. Nat. Clin. Pract. Cardiovasc. Med. 3 (Suppl. 1). S133–S135 (2006)

    Article  PubMed  Google Scholar 

  4. Menasche, P. Cell-based therapy for heart disease: a clinically oriented perspective. Mol. Ther. 17, 758–766 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoover-Plow, J. & Gong, Y. Challenges for heart disease stem cell therapy. Vasc. Health Risk Manag. 8, 99–113 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perin, E. C. et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. J. Am. Med. Assoc. (2012)

  7. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Tapscott, S. J. et al. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242, 405–411 (1988)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Wang, Z., Wang, D. Z., Pipes, G. C. & Olson, E. N. Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl Acad. Sci. USA 100, 7129–7134 (2003)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  11. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  12. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Jugdutt, B. I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395–1403 (2003)

    Article  PubMed  Google Scholar 

  14. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  15. Bondue, A. & Blanpain, C. Mesp1: a key regulator of cardiovascular lineage commitment. Circ. Res. 107, 1414–1427 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zang, M. X., Li, Y., Wang, H., Wang, J. B. & Jia, H. T. Cooperative interaction between the basic helix-loop-helix transcription factor dHAND and myocyte enhancer factor 2C regulates myocardial gene expression. J. Biol. Chem. 279, 54258–54263 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Dai, Y. S., Cserjesi, P., Markham, B. E. & Molkentin, J. D. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J. Biol. Chem. 277, 24390–24398 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Ghosh, T. K. et al. Physical interaction between TBX5 and MEF2C is required for early heart development. Mol. Cell. Biol. 29, 2205–2218 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Byun, J. et al. Myocardial injury-induced fibroblast proliferation facilitates retroviral-mediated gene transfer to the rat heart in vivo . J. Gene Med. 2, 2–10 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Med. 13, 952–961 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Schneider, M. et al. S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc. Res. 75, 40–50 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Loffredo, F. S. et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8, 389–398 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beyer, E. C. Gap junctions. Int. Rev. Cytol. 137C, 1–37 (1993)

    CAS  PubMed  Google Scholar 

  29. Saffitz, J. E., Green, K. G., Kraft, W. J., Schechtman, K. B. & Yamada, K. A. Effects of diminished expression of connexin43 on gap junction number and size in ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 278, H1662–H1670 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Acharya, A., Baek, S. T., Banfi, S., Eskiocak, B. & Tallquist, M. D. Efficient inducible Cre-mediated recombination in Tcf21 cell lineages in the heart and kidney. Genesis 49, 870–877 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh, P. C. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Med. 13, 970–974 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  33. Tandan, S. et al. Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ. Res. 105, 51–60 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  35. Luo, X. et al. Aberrant localization of intracellular organelles, Ca2+ signaling, and exocytosis in Mist1 null mice. J. Biol. Chem. 280, 12668–12675 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985)

    CAS  PubMed  Google Scholar 

  37. Hardy, M. E. et al. Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in beagle dog left ventricular midmyocardial myocytes. J. Pharmacol. Toxicol. Methods 60, 94–106 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl Acad. Sci. USA 92, 9146–9150 (1995)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  39. Subramaniam, A. et al. Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24613–24620 (1991)

    CAS  PubMed  Google Scholar 

  40. Sohal, D. S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Russell, J. L. et al. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ. Res. 108, 51–59 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Cabrera for graphics. We are grateful to members of the Olson lab for critical reading of the manuscript. We thank D. Sosic, W. Tang, J. O’Rourke, N. Liu, M. Xin, A. Johnson and J. McAnally for discussions; J. Shelton and J. A. Richardson for histology. We are grateful to I. Bezprozvanny for the PTI Ca2+ Imaging System, and D. Srivastava for lentiviral plasmids. We thank the microarray core at University of Texas Southwestern Medical Center for collecting gene expression data. E.N.O. is supported by grants from NIH, the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Robert A. Welch Foundation (grant I-0025), the Leducq Fondation-Transatlantic Network of Excellence in Cardiovascular Research Program, the American Heart Association-Jon Holden DeHaan Foundation and the Cancer Prevention & Research Institute of Texas (CPRIT).

Author information

Authors and Affiliations

Authors

Contributions

K.S. and E.N.O. conceived the project. K.S., Y.-J.N. and E.N.O. designed the experiments. K.S., Y.-J.N., X.L., X.Q., W.T., G.N.H., C.L.S. and A.A. performed experiments. J.A.H. contributed to surgical experiments; E.G.N. made the Fsp1-Cre mouse line. K.S. and R.B.-D. wrote the animal protocol. M.D.T. and R.B.-D. contributed scientific discussion. K.S., Y.-J.N., X.L., M.D.T., R.B.-D. and E.N.O. analysed data and prepared the manuscript.

Corresponding author

Correspondence to Eric N. Olson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-21. (PDF 1479 kb)

Supplementary Movie 1

This movie shows beating induced cardiac-like myocytes (iCLM) generated from adult cardiac fibroblasts (CFs) 6 weeks post-infection of retroviruses expressing GHMT transcription factors. (MOV 2392 kb)

Supplementary Movie 2

This movie shows beating induced cardiac-like myocytes (iCLM) generated from adult cardiac fibroblasts (CFs) 6 weeks post-infection of retroviruses expressing GHMT transcription factors. (MOV 1796 kb)

Supplementary Movie 3

This movie shows beating induced cardiac-like myocytes (iCLM) generated from adult tail tip fibroblasts (TTFs) 6 weeks post-infection of retroviruses expressing GHMT transcription factors. (MOV 2004 kb)

Supplementary Movie 4

This movie shows beating induced cardiac-like myocytes (iCLM) that were isolated from mouse heart at 5 weeks post-MI and injection of retroviruses expressing GHMT transcription factors. (MOV 2628 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, K., Nam, YJ., Luo, X. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012). https://doi.org/10.1038/nature11139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing