Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi

Abstract

Peroxisomes are eukaryotic organelles important for the metabolism of long-chain fatty acids1,2. Here we show that in numerous fungal species, several core enzymes of glycolysis, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (PGK), reside in both the cytoplasm and peroxisomes. We detected in these enzymes cryptic type 1 peroxisomal targeting signals (PTS1)3, which are activated by post-transcriptional processes. Notably, the molecular mechanisms that generate the peroxisomal isoforms vary considerably among different species. In the basidiomycete plant pathogen Ustilago maydis, peroxisomal targeting of Pgk1 results from ribosomal read-through, whereas alternative splicing generates the PTS1 of Gapdh. In the filamentous ascomycete Aspergillus nidulans, peroxisomal targeting of these enzymes is achieved by exactly the opposite mechanisms. We also detected PTS1 motifs in the glycolytic enzymes triose-phosphate isomerase and fructose-bisphosphate aldolase. U. maydis mutants lacking the peroxisomal isoforms of Gapdh or Pgk1 showed reduced virulence. In addition, mutational analysis suggests that GAPDH, together with other peroxisomal NADH-dependent dehydrogenases, has a role in redox homeostasis. Owing to its hidden nature, partial peroxisomal targeting of well-studied cytoplasmic enzymes has remained undetected. Thus, we anticipate that further bona fide cytoplasmic proteins exhibit similar dual targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryptic peroxisomal targeting signals in Gapdh and Pgk1 in U. maydis.
Figure 2: Dual targeting of GAPDH and PGK occurs in many fungi.
Figure 3: Peroxisomal localization of glycolytic enzymes is important for virulence and growth in U. maydis.

Similar content being viewed by others

References

  1. De Duve, C. & Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966)

    Article  CAS  Google Scholar 

  2. Poirier, Y., Antonenkov, V. D., Glumoff, T. & Hiltunen, J. K. Peroxisomal β-oxidation – a metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763, 1413–1426 (2006)

    Article  CAS  Google Scholar 

  3. Gould, S. J., Keller, G. A., Hosken, N., Wilkinson, J. & Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664 (1989)

    Article  CAS  Google Scholar 

  4. Gabaldon, T. Peroxisome diversity and evolution. Phil. Trans. R. Soc. Lond. B 365, 765–773 (2010)

    Article  CAS  Google Scholar 

  5. Graham, I. A. Seed storage oil mobilization. Annu. Rev. Plant Biol. 59, 115–142 (2008)

    Article  CAS  Google Scholar 

  6. Michels, P. A., Bringaud, F., Herman, M. & Hannaert, V. Metabolic functions of glycosomes in trypanosomatids. Biochim. Biophys. Acta 1763, 1463–1477 (2006)

    Article  CAS  Google Scholar 

  7. Jedd, G. Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol. 21, 12–19 (2011)

    Article  CAS  Google Scholar 

  8. Purdue, P. E. & Lazarow, P. B. Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752 (2001)

    Article  CAS  Google Scholar 

  9. Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P. & Tabak, H. F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85–95 (2005)

    Article  CAS  Google Scholar 

  10. Tabak, H. F. et al. Formation of peroxisomes: present and past. Biochim. Biophys. Acta 1763, 1647–1654 (2006)

    Article  CAS  Google Scholar 

  11. Girzalsky, W., Saffian, D. & Erdmann, R. Peroxisomal protein translocation. Biochim. Biophys. Acta 1803, 724–731 (2010)

    Article  CAS  Google Scholar 

  12. Brocard, C. & Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta 1763, 1565–1573 (2006)

    Article  CAS  Google Scholar 

  13. Lazarow, P. B. The import receptor Pex7p and the PTS2 targeting sequence. Biochim. Biophys. Acta 1763, 1599–1604 (2006)

    Article  CAS  Google Scholar 

  14. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A. & Eisenhaber, F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J. Mol. Biol. 328, 581–592 (2003)

    Article  CAS  Google Scholar 

  15. Jones, J. M., Nau, K., Geraghty, M. T., Erdmann, R. & Gould, S. J. Identification of peroxisomal acyl-CoA thioesterases in yeast and humans. J. Biol. Chem. 274, 9216–9223 (1999)

    Article  CAS  Google Scholar 

  16. Baranov, P. V., Gesteland, R. F. & Atkins, J. F. Recoding: translational bifurcations in gene expression. Gene 286, 187–201 (2002)

    Article  CAS  Google Scholar 

  17. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008)

    Article  CAS  Google Scholar 

  18. Gurvitz, A. et al. The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19 . J. Biol. Chem. 272, 22140–22147 (1997)

    Article  CAS  Google Scholar 

  19. Managadze, D. et al. A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa . Proteomics 10, 3222–3234 (2010)

    Article  CAS  Google Scholar 

  20. Idnurm, A., Giles, S. S., Perfect, J. R. & Heitman, J. Peroxisome function regulates growth on glucose in the basidiomycete fungus Cryptococcus neoformans . Eukaryot. Cell 6, 60–72 (2007)

    Article  CAS  Google Scholar 

  21. Kiel, J. A., Veenhuis, M. & van der Klei, I. J. PEX genes in fungal genomes: common, rare or redundant. Traffic 7, 1291–1303 (2006)

    Article  CAS  Google Scholar 

  22. van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. & Tabak, H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480–3486 (1995)

    Article  CAS  Google Scholar 

  23. Visser, W. F., van Roermund, C. W., Ijlst, L., Waterham, H. R. & Wanders, R. J. Metabolite transport across the peroxisomal membrane. Biochem. J. 401, 365–375 (2007)

    Article  CAS  Google Scholar 

  24. Rottensteiner, H. & Theodoulou, F. L. The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. Biochim. Biophys. Acta 1763, 1527–1540 (2006)

    Article  CAS  Google Scholar 

  25. Bernhardt, K., Wilkinson, S., Weber, A. P. & Linka, N. A peroxisomal carrier delivers NAD and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J. 69, 1–13 (2011)

    Article  Google Scholar 

  26. Kiel, J. A. et al. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct. Integr. Genomics 9, 167–184 (2009)

    Article  CAS  Google Scholar 

  27. Strijbis, K., van den Burg, J., F, Visser, W., van den Berg, M. & Distel, B. Alternative splicing directs dual localization of Candida albicans 6-phosphogluconate dehydrogenase to cytosol and peroxisomes. FEMS Yeast Res. 12, 61–68 (2012)

    Article  CAS  Google Scholar 

  28. Kabran, P., Rossignol, T., Gaillardin, C., Nicaud, J. M. & Neuveglise, C. Alternative splicing regulates targeting of malate dehydrogenase in Yarrowia lipolytica . DNA Res. 10.1093/dnares/dss007 (24 February 2012)

  29. Teusink, B., Walsh, M. C., van Dam, K. & Westerhoff, H. V. The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23, 162–169 (1998)

    Article  CAS  Google Scholar 

  30. Haanstra, J. R. et al. Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proc. Natl Acad. Sci. USA 105, 17718–17723 (2008)

    Article  CAS  ADS  Google Scholar 

  31. Sambrook, J. & Russell, D. Molecular Cloning: a Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2001)

    Google Scholar 

  32. Schulz, B. et al. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295–306 (1990)

    Article  CAS  Google Scholar 

  33. Loubradou, G., Brachmann, A., Feldbrügge, M. & Kahmann, R. A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis . Mol. Microbiol. 40, 719–730 (2001)

    Article  CAS  Google Scholar 

  34. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular and Cell Biology. (Academic, 2002)

    Google Scholar 

  35. Brachmann, A., König, J., Julius, C. & Feldbrügge, M. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis . Mol. Genet. Genomics 272, 488 (2004)

    Article  CAS  Google Scholar 

  36. Schink, K. O. & Bölker, M. Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis . Mol. Biol. Cell 20, 1081–1088 (2009)

    Article  CAS  Google Scholar 

  37. Spellig, T., Bottin, A. & Kahmann, R. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis . Mol. Gen. Genet. 252, 503–509 (1996)

    CAS  PubMed  Google Scholar 

  38. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004)

    Article  CAS  Google Scholar 

  39. Hoffman, C. S. & Winston, F. A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation in Escherichia coli . Gene 57, 267–272 (1987)

    Article  CAS  Google Scholar 

  40. Kämper, J. et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444, 97–101 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Heitman and W. K. Holloman for reading of the manuscript. We thank R. Fischer and G. Barth for providing strains and DNA. We acknowledge technical assistance by M. Piscator. We thank D. Lanver and T. Stehlik for discussions. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG-GK1216). J.A. received a fellowship from the Marburg University Research Academy (MARA).

Author information

Authors and Affiliations

Authors

Contributions

M.B. and J.F. designed this study. J.F. and J.A. performed the experiments. All authors contributed to data analysis. M.B. and J.F. wrote the manuscript.

Corresponding author

Correspondence to Michael Bölker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 and Supplementary Tables 1-2. (PDF 5328 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitag, J., Ast, J. & Bölker, M. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485, 522–525 (2012). https://doi.org/10.1038/nature11051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11051

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing